
Symantec C++
Creating an
Application with
Symantec C++

Part Two

3 Starting a Project and
Defining Workspaces

4 Generating an
Application Framework

5 Defining Classes and
Their Hierachies

6 Editing Program Code
7 Adding Look and Feel

with Resources
8 Testing an Application

Symantec C++ Use
r’s Guide and Reference

Starting a Project and
Defining Workspaces

3

This

app

chapter describes the initial steps involved in writing an
lication: creating the project that defines your target and then

defining workspaces used in working on a project. These topics are
covered here in sufficient depth to get you started; more detailed
information is presented in Chapter 15, “More about Projects and
Workspaces.”

What Are Projects and Workspaces?
A project is a collection of files from which an executable or library
is generated. The IDDE automatically generates a file (called the
makefile) that tracks the dependencies in your project. This makefile
is configured using the project option settings you specify. The IDDE
executes the makefile when you build your project. File extensions
are used to determine which tool is needed to build each
component. Project building is discussed in Chapter 8, “Testing an
Application.”

Workspaces, which are among the IDDE’s most useful features, are
window configurations used for particular tasks. To create a
workspace, you name and save the exact arrangement of windows
on your screen. Any time you need to perform a similar task, you
can instantly open that workspace, with the windows organized the
way you want them. For more information on workspaces, refer to
Chapter 15, “More about Projects and Workspaces.”

Starting a Project
This section describes how to start a new project, how to open an
existing project, and how to edit the project contents.
Symantec C++ User’s Guide and Reference 3-1

3 Starting a Project and Defining Workspaces

3-2 Symantec C++ U
Purpose of a project
The project is central to building an application with the IDDE. A
project is a container for the application you are building. It contains
the various components necessary for building an application or a
library, as well as information about how to build it.

Projects speed development time because they let you recompile
only the source files that have changed, or whose header files have
changed, since the last time the project was built. For example, if
your program has five source files and you have changed one of
them since the last build, only that file is recompiled when you build
the project. (You can, however, choose to recompile all the files.)
The project management system does this by automatically analyzing
the dependencies of the source files and constructing or updating
the makefile each time the project is built.

Contents of a project
A project can contain several different types of file, including C and
C++ source, assembly language source, resource scripts, object files,
libraries, and module definition files. And because a project is built
in a hierarchical manner, you can include projects within projects.

The IDDE stores information about a project on disk as a project file
with a .prj extension. Among other information, this file includes
a list of the source files contained in a project. When you build the
project, the IDDE constructs a makefile (.mak)—or updates the
existing makefile—based on the files the project contains. Project
options are stored in an option set file (.opn) that is referenced in
the project file. The option set file can be loaded into another
project, making it easy to transfer all option settings from one project
to another.

Creating a new project
To create a new project, choose New from the Project menu. The
ProjectExpress dialog box opens. ProjectExpress lets you specify
the project name, initial project options, and initial project contents
of the new project. The ProjectExpress dialog box contains four
pages of options, described in the following sections.
ser’s Guide and Reference

Starting a Project
Naming the project
Initially ProjectExpress displays the Project Name page (see
Figure 3-1).

Select the directory in which you want to create the project from the
Directories listbox, or click on New Directory to make a new
directory for this project. Enter the name of the new project in the
Project Name textbox.

If you select Use AppExpress to create new application, then click
on Finish, AppExpress will start. AppExpress is discussed in Chapter
4, “Generating an Application Framework.”

Figure 3-1 ProjectExpress Project Name page
Symantec C++ User’s Guide and Reference 3-3

3 Starting a Project and Defining Workspaces

3-4 Symantec C++ U
Setting the project type
To set the target operating system, target type, and other options,
click on Next, or select Set project type from the left listbox, to
switch to the Project Type page (Figure 3-2).

After the project is created, you can modify these settings by
choosing Settings from the Project menu. These options are
discussed in more detail in Chapter 15, “More about Projects and
Workspaces.”

Figure 3-2 ProjectExpress Project Type page
ser’s Guide and Reference

Starting a Project
Adding files to the project
To add pre-existing source, header, or other files to the new project,
click on Next, or select Add files to project from the left listbox, to
continue to the Project Edit page (Figure 3-3).

If you are creating a new project, you do not need to do anything on
this page. After the project is created, you can open a similar dialog
box by choosing Edit from the Project menu (see the section
“Adding and deleting project files” later in this chapter).

Figure 3-3 ProjectExpress Project Edit page
Symantec C++ User’s Guide and Reference 3-5

3 Starting a Project and Defining Workspaces

3-6 Symantec C++ U
Setting defines and include directories
To define macros, specify search paths, or exclude a directory from
parsing, click on Next, or select Initial settings, to continue to the last
page of the ProjectExpress dialog box (Figure 3-4).

To define a macro on the compiler command line, enter the macro
in the Defines textbox (for example, COLOR=1). Separate multiple
macro definitions with semicolons. Type any #include file search
paths you want on the compiler command line in the Include
Directories textbox. Type any directories to be excluded from
parsing in the Browser Exclude Directories textbox. (For more
information about parsing, see Chapter 5, “Defining Classes and
Their Hierarchies.”

In general, you can leave these fields blank. You may change these
options later by choosing Settings from the Project menu.

After the project is set up the way you want, click on Finish to create
the new project.

Figure 3-4 ProjectExpress Initial Settings page
ser’s Guide and Reference

Opening an Existing Project
Opening an Existing Project
To open a project that already exists, choose Open from the Project
menu. The IDDE displays the Open Project dialog box. Select the
desired project filename and click OK.

IDDE lets you work with only one project at a time. If you’re already
working with a project when you open a new one, the IDDE closes
the project in process.

An additional method for opening existing projects is to choose one
from the list of projects at the bottom of the Project menu. Projects
are added to this menu as they’re opened or created. This makes it
easier for you to switch back and forth between projects as you
work.

Adding and deleting project files
To add or remove files from your project, choose Edit from the
Project menu. The IDDE opens the Edit Project dialog box, shown
in Figure 3-5.

Figure 3-5 Edit Project dialog box
Symantec C++ User’s Guide and Reference 3-7

3 Starting a Project and Defining Workspaces

3-8 Symantec C++ U
The Project Files listbox contains the files in your project.

• To add a file to your project, select the file from the File
Name listbox and click on Add, or double-click on the
name of the file.

• To add all the files in the File Name listbox, click in the
listbox, click on Select All, and then click on Add.

• To remove a file from the project, select it from the
Project Files listbox and click on Remove, or double-click
on the name of the file.

• To remove all the files from the project, click on the
Project Files listbox, click on Select All, and then click on
Remove.

To make the changes to your project, click OK. To leave your project
as it was before, click Cancel.

After you click OK, the IDDE checks your project for dependencies
and creates a makefile. While checking for dependencies, the IDDE
adds the additional files it needs to build your project. For example,
it adds all the header files that your source files reference with the
#include directive.

The Project window
The Project window, shown in Figure 3-6, displays a list of files in
the current project. You can open the Project window by choosing
Project from the Goto View submenu of the IDDE’s Window
menu.

Figure 3-6 Project window
ser’s Guide and Reference

Defining Workspaces
You can double-click on the name of a source file in the right pane
to open that file for editing in a Source window. (See Chapter 6,
“Editing Program Code,” for a description of text editing functions.)

You can see the current project’s subprojects, or open a subproject,
by double-clicking on the project name in the left pane.

The icon to the left of each filename indicates certain properties of
the file. If the icon is blue, the file was explicitly added to the
project; if the icon is gray, the file is included in the project by a
dependency relationship or by parsing.

The icon next to each filename contains different information during
debugging. An asterisk indicates that the module contains debug
information. A “T” at the right of the icon indicates that tracing is
enabled in the module. Dots indicate that the module contains
breakpoints: a green dot indicates enabled breakpoints, and a red
dot indicates disabled breakpoints.

Closing a project
To close a project that is currently open, choose Close from the
Project menu. The project will be saved automatically.

Importing a Microsoft or Borland project
You can import an existing Microsoft or Borland project into the
IDDE project system, by using the other product’s makefile.

First, choose Open from the Project menu. In the “List files of type”
listbox, choose Import Make. When you open a Microsoft or Borland
makefile, the IDDE lets you work with it as you would a Symantec
C++ project.

To build the project with the original Microsoft or Borland makefile,
use the Make page under the Build tab in the Project Settings
dialog box (see Chapter 16, “More about Project Build Settings”) to
call the original makefile or batch file.

Defining Workspaces
This section describes how to set up and save your own workspaces.

The purpose of workspaces
The IDDE’s workspace feature lets you set up multiple screen
configurations, each of which is optimized for a specific task. For
Symantec C++ User’s Guide and Reference 3-9

3 Starting a Project and Defining Workspaces

3-10 Symantec C++ U
example, you can have a workspace for editing source files, another
for working with project resources, and another for debugging DLLs.
You can define up to five different workspaces.

Creating a workspace
To start a new workspace, choose New from the Workspace
submenu of the IDDE’s Environment menu. Type the name of the
new workspace in the Workspace Name dialog box. This name
appears in the Workspace toolbox, as shown in Figure 3-7. You can
then configure the screen as you like by opening the windows you
need and positioning and sizing them to suit your requirements. You
can refine the workspace as you work; the IDDE automatically saves
changes to a workspace configuration when you exit the workspace.

Selecting a workspace
To change workspaces, click on a tab in the Workspace toolbox, or
choose from the list of workspaces in the Environment menu.
Changing your workspace does not affect your project; it just
changes the way information is presented on the screen.

More options for workspaces
For more information on how to create, edit, clone, and delete
workspaces, and to find out how to change workspace options, refer
to Chapter 15, “More about Projects and Workspaces.”

Figure 3-7 Workspace toolbox
ser’s Guide and Reference

Generating an
Application Framework

4

This

nec

chapter introduces application frameworks and the steps
essary to generate and build on such a framework. This process

uses two tools: AppExpress and ClassExpress.

Before reading this chapter, you may want to look at the material in
Chapter 3 on managing projects and workspaces in the IDDE.
AppExpress creates both an application framework (according to
specifications you provide) and the project in which that framework
resides.

Chapter 17, “More about AppExpress,” and Chapter 18, “More about
ClassExpress,” are the reference chapters for the AppExpress and
ClassExpress tools. Refer to them when you are ready to explore
these tools’ features in more depth.

What Is an Application Framework?
An application framework is a standardized skeleton architecture for
an object-oriented application. The framework is composed of C++
classes derived from base classes in the Microsoft Foundation Class
(MFC) library.

Using a framework to build an application dramatically shortens its
development time. All the files needed to create the application are
included in the skeleton program. Standard user interface
components such as windows, menus, and toolbars are already
defined. Some of the necessary connections between the defined
C++ classes are established automatically.
Symantec C++ User’s Guide and Reference 4-1

4 Generating an Application Framework

4-2 Symantec C++ U
With a framework as a starting point and using the MFC library, you
can build many different types of applications by:

• Adding or changing user interface components with
ResourceStudio (see Chapter 7, “Adding Look and Feel
with Resources”)

• Creating new C++ classes, class methods, and class
member variables with ClassExpress

• Writing code

As you build application frameworks with AppExpress and
ClassExpress, you will become familiar with message maps. Message
maps summarize, within a data structure or table, all of the links
between Windows messages and the methods (also called functions)
of a particular class that process those messages. Each entry in a
message map is a pair, consisting of a message identifier and a
method that responds to that message. The method is said to handle
the message. Methods referenced in message maps are also called
message handlers, or simply handlers.

Because message maps are used by MFC to route Windows
messages to the messages’ handlers, they provide the essential
translations needed to present the event-driven model of the
Windows API in an object-oriented guise. By automating the creation
and maintenance of message maps, AppExpress and ClassExpress
relieve you of much error-prone drudgery, and allow you to spend
more of your development time writing code that implements
functionality.

The following sample message map was automatically generated by
AppExpress for an MDI-style application framework:

BEGIN_MESSAGE_MAP(CMainView, CView)
//{{AFX_MSG_MAP(CMainView)
// NOTE - ClassExpress will add and

 //remove mapping macros here.
// DO NOT EDIT what you see in these

 // blocks of generated code !
//}}AFX_MSG_MAP
// Standard printing commands
ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW,

 CView::OnFilePrintPreview)
END_MESSAGE_MAP()
ser’s Guide and Reference

Creating a Framework with AppExpress
Creating a Framework with AppExpress
This section describes how to launch AppExpress and use it to
generate an application framework.

Launching AppExpress
From the IDDE main window, choose AppExpress from the Tools
menu. This opens the window shown in Figure 4-1.

Looking at the AppExpress window
The AppExpress window contains:

• A listbox at the upper left displaying the steps required
to create an application framework. The current selection
from this list determines which page of options is shown
in the larger pane to the right.

• A pane on the right showing the options associated with
the currently selected step.

• Buttons below the panes that you can use to navigate
among the steps, preview your work, or generate a
framework.

Figure 4-1 AppExpress window
Symantec C++ User’s Guide and Reference 4-3

4 Generating an Application Framework

4-4 Symantec C++ U
To navigate through the six pages of options, click on the name of a
step in the steps list, or click on the Next or Previous button.
Alternatively, press Control-n, where n is a number between 1 and 6
representing the selected step’s position in the steps list.

Specifying an application framework
AppExpress divides the process of building a framework into six
steps:

• Select an application type
• Select a directory for the project
• Provide copyright information and project options
• Specify class names
• Specify source file names
• Specify help file names

These steps, which are briefly outlined here, do not have to be
completed in this order. However, you will find it convenient to
complete the first step—specifying application type options—before
proceeding to any other step. All later steps contain some options
that depend upon your choices in this step.

Selecting an application type
To select an application type:

1. Select Application Type from the steps list in the
AppExpress window.

2. Select an application type by clicking on a radio button
in the Applications group. There are six categories of
applications, two of which—SDI and MDI—can be made
OLE clients and/or servers.

Check the Include Help box if you want AppExpress to generate
files from which a Windows help file can be created. Check the 32-
Bit Project box if you are building a 32-bit application. See Chapter
17, “More about AppExpress” for the details of how the 32-Bit
Project check box combines with the selected application type to
determine what AppExpress generates.
ser’s Guide and Reference

Creating a Framework with AppExpress
Selecting application type options sets default options for many of
the other steps in AppExpress. For example, if you select Dialog
Box, AppExpress automatically creates three C++ classes with default
class names in your skeleton program. You can change these
defaults; for example, you can modify the default class names by
selecting Names from the steps list.

Selecting a directory for the project
To select a directory for your source files and project file:

1. Select the Select Directory item from the steps list.
The Select Directory options page opens as shown in
Figure 4-2.

2. Select the appropriate drive and directory. Or, click on
Create New Directory to create and name a new
directory. AppExpress suggests the project name as the
new directory name, but you may change that default.

Figure 4-2 Select Directory options
Symantec C++ User’s Guide and Reference 4-5

4 Generating an Application Framework

4-6 Symantec C++ U
Providing copyright information and project options
You can supply copyright information for your source code, and set
the project’s name, stack size, and heap size as follows:

1. Select Miscellaneous from the steps list. The
Miscellaneous options page opens as shown in
Figure 4-3.

2. Provide copyright information in the appropriate fields.
AppExpress uses this information to write a copyright
notice in the comment header of all of your application’s
source files, and to construct the application’s About
dialog box.

3. Specify the project name in the appropriate field. Stack
and heap sizes can be changed later in the Project
Settings dialog box.

Specifying class names
To view and change the names of C++ classes or their associated
source files:

1. Select Names from the steps list. The Names options
page opens as shown in Figure 4-4.

Figure 4-3 Miscellaneous options
ser’s Guide and Reference

Creating a Framework with AppExpress
2. In the options pane, select a class from the Name drop-
down list automatically created by AppExpress. The class
names included in this list depend on the application
type you have selected.

3. If you like, you can edit the selected class name. Note,
however, that C++ class names follow a standardized
naming convention. Using the default names allows your
program’s structure to be easily understood by others.

4. In the appropriate field, type the names of the header
and source files in which AppExpress should place the
class source code.

Note
The CAboutDlg class, which represents your
application’s About Box class, is always created in
the same header and implementation files as the
CWinApp-derived class (for example, CSDIAPP).

To discard any changes you have made on this page, click on the Set
Default Names button.

Figure 4-4 Names options
Symantec C++ User’s Guide and Reference 4-7

4 Generating an Application Framework

4-8 Symantec C++ U
Naming source files
To edit filenames automatically generated by AppExpress:

1. Select File Names from the steps list. The File Names
options page opens as shown in Figure 4-5.

2. In the options pane, click on the filename you want to
change. The files listed depend on the application type
you have selected. Their names correspond to their
functionality within the application.

3. Edit the filename, but remember that these changes
could make it harder for someone else to identify the
purpose of the file.

Figure 4-5 File Names options
ser’s Guide and Reference

Creating a Framework with AppExpress
Specifying help file names
To view or change the names of the files that the help compiler uses
to generate online help files for your application:

1. Select Help Options from the steps list. The Help
Options options page opens as shown in Figure 4-6.

Note
If you selected Quick Console or Dialog Box as the
application type, or if Include Help is not selected
in the Application Type options page, then you
have no help options.

2. Edit the filenames if you want. Note, however, that any
changes could make it harder for someone else to
identify the purpose of the file.

Generating an application framework
At this point, you have selected an application type and the directory
in which the application project files will reside, and you may have
customized various class names or filenames. AppExpress can now
generate your application framework in the form of a skeleton
program.

Figure 4-6 Help Options options
Symantec C++ User’s Guide and Reference 4-9

4 Generating an Application Framework

4-10 Symantec C++ U
Click on the Finish button in the AppExpress window. AppExpress
generates the project and its source files, as you specified, hands it
off to the project system, and closes.

Note
If you checked the Include Help box among the
Application Type options, then you will need to
build the help file for your application. You do this
by running the makehelp.bat file that
AppExpress creates in your project directory.

Your skeleton program is ready. You can now build the program
from within the IDDE, or you can add to your program by using
other Symantec C++ tools. The next section shows how to enhance
your application’s C++ classes by using ClassExpress.

Building on a Framework with ClassExpress
AppExpress cuts the work involved at the beginning of the
application-building process. ClassExpress, on the other hand,
enhances productivity throughout the rest of the process. You use
this tool to flesh out the skeleton application produced by
AppExpress.

Specifically, you can use ClassExpress to:

• Write message maps

• Create new classes derived from existing classes

• Create new class methods mapped to specific messages

• Create new class member variables (that is, data variables
that are members of a class) mapped to specific user-
interface objects

• Create new classes that can be OLE2 automation servers
or clients

• Create new classes that act as interfaces to Visual Basic
Custom Controls (also known as VBXs)

This chapter describes the first two of these options: writing message
maps and creating new classes derived from existing classes.
ser’s Guide and Reference

Building on a Framework with ClassExpress
Message maps, defined in “What Is an Application Framework?” in
this chapter, are discussed in greater detail in Chapter 17, “More
about AppExpress.”

You can use ClassExpress immediately after creating an application
framework as well as at later points in development. For example,
you probably want to wait until you have created some dialog boxes
with ResourceStudio (see Chapter 7, “Adding Look and Feel with
Resources”) before mapping class member variables to user interface
objects.

Launching ClassExpress
From the IDDE main menu, you launch ClassExpress by choosing
ClassExpress from the IDDE’s Tools menu.

Launching ClassExpress opens the window shown in Figure 4-7.

Looking at the ClassExpress window
The ClassExpress window contains:

• A listbox at the upper left presenting the different kinds
of code that ClassExpress can generate

• A pane on the right showing the page of options
associated with each selection from the list at the upper
left

Figure 4-7 ClassExpress window
Symantec C++ User’s Guide and Reference 4-11

4 Generating an Application Framework

4-12 Symantec C++ U
To navigate through the selections, click on the name of a selection
in the list. Alternatively, use the key combination Control-n, where n
is a number between 1 and 6 representing the position in the
selections list of the selection to which you want to move.

Writing a message map with ClassExpress
Message maps are tied to particular C++ classes. In ClassExpress, you
can add to an existing message map by adding new linkages
between messages and class methods. Or you can add a new
message map for an entirely new class.

You can launch ClassExpress from within the IDDE or as a stand-
alone application. If you launch it from within the IDDE,
ClassExpress will be loaded with the IDDE’s open project if there is
one; otherwise, you are prompted to open an existing project (which
also opens the project in the IDDE’s project system).

As an example, the following steps demonstrate how to add a
message handler to the CAboutDlg class of an SDI application
generated by AppExpress:

1. Select Message Maps from the listbox. (If you just started
ClassExpress, this should already be selected.) The
ClassExpress window is displayed as shown in Figure
4-7.

2. Select the class CAboutDlg from the Class drop-down list.
The contents of the three other lists in the options pane
are updated to reflect the following selection:
ser’s Guide and Reference

Building on a Framework with ClassExpress
• Control IDs in Class: This list contains all of the menu
links and control IDs for which this class can add
handlers. For example, IDOK is a universally defined
constant for an OK button. Because the CAboutDlg class
includes an OK button by default, the IDOK constant is
always predefined for this class.

Because this class represents a dialog box—which itself
can respond to many Windows messages—the first item
in the Control IDs in Class list is the name of the class
itself (CAboutDlg).

• Windows Messages: This list contains all of the Windows
messages that apply to the selected item in the Control
IDs in Class list. For example, if you highlight IDOK in
that list, two applicable messages (button notifications, in
this case) are displayed in the Windows Messages list:
BN_CLICKED and BN_DOUBLECLICKED. If a handler is
defined for a message, a red box appears before the
message name in this list.

• Function Name: This list contains all of the handlers that
exist within the selected class. These are the methods
that are linked to Windows messages.

3. Select CAboutDlg from the Control IDs in Class list. The
list of Windows messages changes, revealing a long list
of messages to which your dialog box could respond.

4. Double-click on WM_ACTIVATE. Notice that the method
OnActivate (in its fully prototyped form) is added to the
Function Name list.

Now, whenever your About dialog is activated, the OnActivate
method is called in response to the dialog window receiving the
message WM_ACTIVATE. With the four above steps, you have
created an association between the message WM_ACTIVATE and the
method OnActivate , and added it to the message map for the
CAboutDlg class.
Symantec C++ User’s Guide and Reference 4-13

4 Generating an Application Framework

4-14 Symantec C++ U
Adding a new class to your application
Adding new classes to your application is as easy as creating a
message map. To add a class:

1. Select Message Maps from the listbox. (If you just loaded
ClassExpress, then this should already be selected.)

2. Click on the Add Class button. The Add Class dialog box
shown in Figure 4-8 opens.

3. Select a class type from the Class Type drop-down list.
This type specifies the base class from which your new
class will be derived. The list displays names of MFC
classes without the initial letter ‘C’, thereby allowing you
to navigate rapidly within the list by typing the first letter
of a class type. For example, typing ‘V’ selects the View
class type.

4. The New Class Name field becomes active, displaying a
suggested name for the new class. Edit this name as
appropriate.

5. If you selected CDialog or CFormView, then the field
Dialog ID is displayed. Move to this field and choose the
resource ID of the dialog that you want to associate with
the new class’s window.

Figure 4-8 Add Class dialog box
ser’s Guide and Reference

Building on a Framework with ClassExpress
6. Check the OLE Automation box if you want your new
class to be a programmable OLE object. If you choose
this option, any other Windows application that is an
automation client can use the OLE interface you define
for this object.

7. If you check the OLE Automation box and you are
deriving a new class from the CCmdTarget or CWnd
class, the Creatable check box is displayed. Check this
box if you want other applications to be able to create
the OLE automation object that you are defining.

8. If you check the OLE Automation check box and you are
deriving a new class from the CCmdTarget or CWnd
class, you must also type a name in the External Name
field. This is the name that is exposed to other
applications that may want to use your OLE automation
object.

9. Decide whether to edit the implementation filename of
your new class (shown in the last field in the Add Class
dialog box). By default, the base part of the filename is
the name of your new class without the initial letter ‘C’,
and truncated if necessary.

10. Click OK to add the new C++ class to your application. If
you want, you can create message mappings for your
new class by using the steps outlined in the previous
section.

This section on ClassExpress showed how easy it is to write a
message map and to create a new class. By just clicking on a check
box, you can also add OLE automation support to your application.

In addition, ClassExpress can bind your classes to your dialog boxes
and generate C++ wrapper classes for Visual Basic custom controls
(VBXs). It also provides extensive support for building OLE servers
and containers. For more information on these features, refer to
Chapter 18, “More about ClassExpress.”
Symantec C++ User’s Guide and Reference 4-15

4 Generating an Application Framework

4-16 Symantec C++ U
ser’s Guide and Reference

Defining Classes and
Their Hierarchies

5

Once

cus

 you have produced an application framework, you can
tomize the application by adding your own classes and functions.

Symantec C++ 7 includes two tools designed specifically for object-
programming: the Class Editor and the Hierarchy Editor. These tools
simplify the design and maintenance of C++ projects by letting you
work directly with the project’s class hierarchy and members. The
editors themselves take care of many of the mundane details of file-
oriented program development, such as opening and closing files
and locating source code for particular member functions.

These tools are suited for developing a class hierarchy from scratch,
for adding classes to an application framework generated with
AppExpress, and for browsing and editing pre-existing class
hierarchies. They are especially useful for understanding the
architecture of unfamiliar source code.

The Class and Hierarchy Editors can perform the same operations on
classes and hierarchies; they differ only in their interface. The Class
Editor’s interface emphasizes member editing; the Hierarchy Editor’s
interface, through its graphical display, emphasizes inheritance
relationships. You can use one or the other, or both simultaneously,
according to preference.

This chapter describes basic operations that may be performed with
the Class and Hierarchy Editors. For a complete reference on these
two tools, see Chapter 19, “Class Editor Reference,” and Chapter 20,
“Hierarchy Editor Reference.”

Parsing and Browsing
The Class and Hierarchy editors are C++ class browsers. These tools
let you work with your source code in an object-oriented manner,
rather than in the traditional file-oriented manner. The Class and
Hierarchy Editors present you with a list of classes in your project,
Symantec C++ User’s Guide and Reference 5-1

5 Defining Classes and Their Hierarchies

5-2 Symantec C++ U
allow you to view the members of each class, and let you edit the
member declarations and definitions directly, without performing the
overhead of opening and closing files and locating source code for
particular members. Changes made to classes or inheritance
relationships in the Class or Hierarchy Editors are automatically
changed in the underlying source code.

To present you with a list of classes and members, the IDDE must
parse the source code. By default, this is done automatically. When
the IDDE detects that source code or project settings have changed
since the last parse, it reparses the necessary files. If errors are
encountered during parsing, messages are displayed in the Output
window. You can double-click on the error message to open for
editing the appropriate file at the point at which the error was
detected.

How the class browsers expand macros
The parser used by the Class and Hierarchy Editors contains a fully
functional C preprocessor. One significant difference between this
parser and the Symantec C compiler is the way the parser expands
macros.

The parser treats an entire project as one "database" of code.
Consequently, preprocessor macros defined in any header will
expand in any subsequently parsed file. This can produce
unexpected errors. For example:

// FOO1.H ------------------------------------
#define pBar (pIndirect->pBar)
// . . .

// FOO1.CPP ----------------------------------
#include <foo1.h>

// FOO2.CPP ----------------------------------
struct A
{
int * pBar; // ERROR! Expands to: int *
(pIndirect->pBar);
};

To avoid errors of this type, undefine the macro at the top of the file
where the error occurs (FOO2.CPP).
ser’s Guide and Reference

Class Editor
Browsing library source code
If you are browsing source code that is based on MFC or some other
large class library, you may find it convenient to turn off the display
of library classes. To do so:

1. Choose Settings from the IDDE’s Project menu.

2. In the Project Settings dialog box, click the Directories
tab.

3. In the Browser Exclude Directories textbox, type the
name of the directory containing the class library headers
(for example, c:\sc\mfc\include).

4. Click OK.

You can control the parsing of individual files in the Project window,
and enable or disable parsing for the entire project in the Target
page of the Project Settings dialog box. For more information, see
Chapter 15, “More about Projects and Workspaces.”

Class Editor
The Class Editor provides a list-based view of the class hierarchy.
From within the Class Editor you may add classes, modify
inheritance relationships, and view and edit class member
declarations and definitions.

To open a Class Editor window, do one of the following:

• Choose Class Editor from the Window menu’s Goto
View submenu.

• Click and drag the Class Editor icon from the Views
toolbox to an empty area of the desktop.

The Class Editor window (see Figure 5-1) is divided into three panes:

• The Classes pane, which contains a list of classes.

• The Members pane, which contains a list of members of
the current (highlighted) class.

• The Source pane, which displays member source code.
You can edit the source code in this pane as in the
Symantec C++ User’s Guide and Reference 5-3

5 Defining Classes and Their Hierarchies

5-4 Symantec C++ U
Source window (see Chapter 6, “Editing Program Code,”
for a description of text editing features).

The Class Editor window contains a standard menu bar and toolbar;
pop-up menus are available in each pane. You can set options for
the grouping, sorting, and display of classes and members in the
Classes and Members panes in the Editing/Browsing Settings
dialog box. For a complete reference on Class Editor menus and
options, see Chapter 19, “Class Editor Reference.”

You can change the relative sizes of panes in the Class Editor
window by first positioning the cursor over the line separating the
panes. The cursor changes to a two-headed arrow. Press the left
mouse button and drag the separator to the desired location.

To select a class in the Classes pane, click on it. Additional classes
may be selected by holding down the Control key and clicking. By
default, classes are displayed hierarchically, with derived classes
below and indented relative to their bases. Classes with multiple
bases are displayed beneath each of the bases. Triangular buttons to
the left of base classes can be used to collapse and expand branches
of the hierarchy. You can set an option to display classes
alphabetically in the Editing/Browsing Settings dialog box.

By default, class members in the Members pane are grouped into
Functions, Data, and Typedefs. The tree structure can be expanded
or collapsed by clicking on the triangular buttons to the left of the
category names. To select a class member, click on it. Additional

Figure 5-1 Class Editor window
ser’s Guide and Reference

Class Editor
members can be selected by clicking while holding down the
Control key. You can display a member declaration or definition in
the Source pane by double-clicking on the member name.

Creating classes
You can create a class hierarchy consisting of new classes related to
other classes by inheritance (derived or sibling classes), or create
new top-level classes not related to any other class.

Creating a top-level class
To create a new class hierarchy, first create a top-level class to serve
as a base for the hierarchy.

To create a new top-level class:

1. Choose Add Top from the pop-up menu in the
Classes pane. The Add Class dialog box is displayed
(Figure 5-2).

2. Type a name for the new class.

3. Click OK.

The class declaration is placed in a new header file, and the header
file is added to the project. By default, the first eight letters of the
class name are used to derive the header filename. You may change
the header filename by typing an alternative name in the Header File
textbox of the Add Class dialog box.

Creating a derived class
After a base class exists, you may create derived classes—specialized
versions of the base class.

To create a new derived class:

1. Select the base class of the new class.

Figure 5-2 Add Class dialog box
Symantec C++ User’s Guide and Reference 5-5

5 Defining Classes and Their Hierarchies

5-6 Symantec C++ U
2. Choose Add Derived from the pop-up menu in the
Classes pane. The Create Derived Class dialog box
opens. (This dialog box is similar to the Add Class
dialog box.)

3. Type a name for the new class.

4. Click OK.

Creating a sibling class
You may also create a new derived class as a “sibling” to an existing
class. Siblings have the same base class with the same access
specifiers.

To create a new sibling class:

1. Select the class whose base class will be the base class of
the new class.

2. Choose Add Sibling from the pop-up menu in the
Classes pane. The Create Derived Class dialog box is
displayed.

3. Type a name for the new class.

4. Click OK.

Editing inheritance relationships
As your application evolves, you may want to restructure your class
hierarchy. The Class Editor lets you add and delete connections
between classes, as well as change the inheritance attributes.

When altering inheritance relationships, the Class and Hierarchy
Editors change only the class declarations. In particular, they do not
change references to base classes and their members in a derived
class’s constructors or functions. If such references exist, you must
change them manually in the source file.

Connecting to a base class
You can connect a class to a base class to make it a derived class of
this base.

To make one existing class derive from another existing class:

1. Select the class that will be the derived class.
ser’s Guide and Reference

Class Editor
2. Choose Connect Base from the pop-up menu in
the Classes pane. The Add Base dialog box opens
(Figure 5-3).

3. From the listbox, select the class (or classes) to be this
class’s base class.

4. Select the desired access specifier. Check Virtual if virtual
inheritance is desired.

5. Click OK.

If the classes are displayed hierarchically, the derived class is
displayed below and is indented relative to the base class in the
Classes pane.

Deleting a connection
You can also disconnect a derived class from a base class.

To delete an inheritance relationship:

1. Select a derived class.

2. Choose Delete Base Connection from the pop-up
menu in the Classes pane.

3. A message box requests confirmation. Click Yes to delete
the base connection.

In cases of multiple inheritance, select one inheritance relationship
to delete by clicking on the instance of the derived class below the

Figure 5-3 Add Base dialog box
Symantec C++ User’s Guide and Reference 5-7

5 Defining Classes and Their Hierarchies

5-8 Symantec C++ U
base to be removed. For classes derived from more than one base
class, multiselecting the inheritance relationships to be deleted lets
you delete all base connections simultaneously. If a class has all of
its base connections severed, it remains in the hierarchy at the top
level.

Editing inheritance attributes
You can change a derived class’s base class access specifier and
virtual inheritance flag.

To edit the base class access specifier:

1. In the Classes pane, select the derived class.

In cases of multiple inheritance, select the base
connection to edit by clicking on the instance of the
derived class below the appropriate base.

2. Choose Edit Base Attributes from the pop-up menu in
the Classes pane.

The Edit Base Attributes dialog box opens (Figure 5-4).

3. Select the desired access specifier. Check Virtual if virtual
inheritance is desired. Click OK.

If you are editing several inheritance relationships simultaneously
and the access specifiers are not identical, a Don’t Change option is
displayed. This lets you change the Virtual specifier without also
affecting the access specifiers. You may, however, select Public,
Protected, or Private, and all connections are given that access
specifier.

Figure 5-4 Edit Base Attributes dialog box
ser’s Guide and Reference

Class Editor
Working with class members
After creating a class, you can implement its functionality through
member data and functions. You may add, delete, and edit class
members through the Members pane and Source panes.

A list of the members of the currently selected class is shown in the
Members pane (Figure 5-5). By default, the member list is sorted into
three categories: Data, Functions, and Typedefs. Within each
category, items are sorted alphabetically. The colored diamond in
front of each member identifies the access as public (green),
protected (yellow), or private (red). Names of members defined as
macros appear in red.

Note
Members that appear in red are not syntactically
verified before source changes are saved back to
the file.

The lists following each category header can be collapsed or
expanded by clicking on the triangular button to the left of the
category name.

Adding a class member
The first step in class implementation is to declare the data members
and member functions.

To add a class member:

Figure 5-5 Members pane of Class Editor
Symantec C++ User’s Guide and Reference 5-9

5 Defining Classes and Their Hierarchies

5-10 Symantec C++ U
1. Choose Add from the pop-up menu in the Members
pane. The Add Member dialog box opens (Figure 5-6).

2. Type the member declaration. The member may be a
data item (for example, int nCats), a function (for
example, int NumCats()), or a typedef (for example,
typedef int CATCOUNT). Do not type any storage
specifiers into the declaration textbox; these are added
by the Class Editor.

3. Select the desired access and storage specifiers. Check
the Inline check box for an inline function.

4. Click OK.

The new member is added to the appropriate group in the Members
pane and to the class declaration in the header file. If the new
member is a function, an empty function is added to the appropriate
source file. If a new source file is created, it is added to the project.

By default, the first eight letters of the class name are used to derive
the source filename for new functions. You may change the file
name by entering an alternative name in the Source File textbox of
the Add Member dialog box.

Deleting a class member
Unneeded class members are easily removed.

To delete a class member:

1. Select the class member to be deleted.

Figure 5-6 Add Member dialog box
ser’s Guide and Reference

Class Editor
2. Choose Delete from the pop-up menu in the Members
pane.

3. When the message box requests confirmation, click Yes
to delete the member.

The declaration is removed from the header file and, if the member
was a function, the function definition is removed from the source
file.

Changing member attributes
As your class and hierarchy evolve, you may decide to change
certain member attributes. For example, you may want to make a
function virtual, or data private.

To change a member’s access and storage specifiers:

1. Select the member you want to change.

2. Choose Edit Attributes from the pop-up menu in the
Members pane. The Change Member Attributes dialog
box opens (Figure 5-7).

3. Select the desired access and storage specifiers. Check
the Inline check box for an inline function. Click OK.

The class declaration in the header file is modified and the Members
display is updated to reflect those changes.

If you are editing several members’ attributes simultaneously and the
access specifiers are not identical, a Don’t Change option is
displayed in the Access group box. Likewise, if the storage specifiers
are not identical, a Don’t Change option is displayed in the Storage

Figure 5-7 Change Member Attributes dialog box
Symantec C++ User’s Guide and Reference 5-11

5 Defining Classes and Their Hierarchies

5-12 Symantec C++ U
group box. These options let you change other member attributes
without affecting the original access or storage of each member. You
may, however, select a particular access or storage specifier, and all
members are given that attribute. Also, when you are editing several
members’ attributes, if the inline attributes are not the same, the
Inline check box changes to allow three states (checked, unchecked,
and grayed, indicating “Do not change”) instead of the normal two-
state options.

Viewing and editing member source
After declaring your class members, you can extend your functions
by editing the function definitions in the Source pane. You also can
change data member types, array dimensions, and so on.

To view and edit member declarations and function definitions:

1. Double-click on the member in the Members pane.

The member’s declaration (for data items and pure
virtual functions) or definition (for other functions) is
displayed in the Source pane. If the source code is not
available (as with MFC libraries, for example), the
definition is displayed.

2. Click in the Source pane to begin editing. Editing
operations here are identical to editing operations in
other Source windows.

3. To save changes, choose Save from the pop-up menu in
the Source pane.

Changes made to a function’s argument and return types in the
definition are updated automatically in the class declaration. The
Members pane is updated when the source is saved.

Note
If you close the current project before you save a
source file you’ve modified with the Class Editor,
you cannot discard the changes or close the file
until you reopen the project.
ser’s Guide and Reference

Class Editor
Viewing and editing source files
At times it is useful to view and edit the entire file containing the
class declaration or the class’s functions. It is necessary, for example,
to add the appropriate #include statements to the source files
before compiling.

To view and edit the header file containing the class declaration:

1. Select the class in the Classes pane.

2. Choose Show Header from the pop-up menu in the
Classes pane. A Source window containing the contents
of the class header file is displayed.

3. Edit the class declaration as desired.

You may add or delete class members as you would
without the Class Editor. However, if you add functions
to the declaration, you have to add the function
definitions manually to the source file as well.

4. Save your changes by choosing Save from the Source
window’s File menu.

5. To close the Source window, choose Close from the File
menu.

6. Click on the Class Editor window. If you have made
changes to the header file, a message box asks whether
it is OK to reparse. Click Yes.

7. Click on the class whose declaration you just edited to
see the member changes updated in the Members pane.

Note
For non-inline functions, if you change the
function’s signature (return type, argument types,
and so forth) in its declaration, you must make the
corresponding changes to its definition by hand, or
the Members pane will display two versions of the
function.
Symantec C++ User’s Guide and Reference 5-13

5 Defining Classes and Their Hierarchies

5-14 Symantec C++ U
To view and edit the source file containing member function
definitions:

1. Select a member function from the Members pane.

2. Choose Show Source from the pop-up menu from the
Members pane. (Show Source is dimmed if the source
code is not available.)

The file containing the member function’s source code is
opened for editing in a Source window.

3. Edit the member functions as desired.

You may edit member functions as you would without
the Class Editor. However, if you change function
arguments or return types, or add new functions, you
must modify or add the function declarations manually in
the header file as well.

4. Save your changes by choosing Save from the Source
window’s File menu.

5. To close the Source window, choose Close from the File
menu.

6. Click on the Class Editor window. If you have made
changes to the source file, a message box asks whether it
is OK to reparse. Click Yes.

Hierarchy Editor
The Hierarchy Editor provides a graphical view of the class
hierarchy. From within the Hierarchy Editor, you may add classes,
modify inheritance relationships, and view and edit class member
declarations and definitions. With its graphical view of class
relationships, the Hierarchy Editor is an especially useful tool when
examining unfamiliar source code for the first time.

To open a Hierarchy Editor window, do one of the following:

• Choose Hierarchy Editor from the Goto View
submenu of the IDDE’s Window menu.
ser’s Guide and Reference

Hierarchy Editor
• Double-click on the Hierarchy Editor icon in the Views
toolbox, or drag the icon to an empty area of the
desktop.

The Hierarchy Editor window opens. By default, only the graphical
display of class hierarchies is shown. To provide full functionality, it
is necessary to enable the editor’s two child windows.

 To enable the Hierarchy Editor child windows:

1. Choose Settings from the Hierarchy Editor’s pop-up
menu. The Editing/Browsing Settings dialog box
opens to the Hierarchy page.

2. Check the items labeled Members and Source in the Pop-
up Windows group box.

3. Click OK.

The Members and Source child windows open below the Hierarchy
Editor window (Figure 5-8).

Figure 5-8 Hierarchy Editor window
Symantec C++ User’s Guide and Reference 5-15

5 Defining Classes and Their Hierarchies

5-16 Symantec C++ U
Unlike the Members and Source panes of the Class Editor, Hierarchy
Editor windows are independent. They have their own menus and
may be positioned, sized, and closed separately. Otherwise, they
behave as do the corresponding panes of the Class Editor. For a
complete reference on Hierarchy Editor menus and options, see
Chapter 20, “Hierarchy Editor Reference.”

Creating classes
A class hierarchy consists of a number of classes connected by
inheritance relationships. You can create new classes related to other
classes by inheritance (derived or sibling classes) or new top-level
classes not related to any other class.

Operations relating to class creation and the establishment of
hierarchical relationships are carried out in the Hierarchy Editor’s
graphical display window.

Creating a top-level class
To create a new class hierarchy, first create a top-level class to serve
as a base for the hierarchy.

To create a new top-level class:

1. Activate the Hierarchy Editor window.

2. Choose Add Top from the pop-up menu. The Add Class
dialog box opens (Figure 5-9).

3. Type a name for the new class.

4. Click OK.

The class declaration is placed in a new header file, the header file is
added to the project, and the new class is selected in the Hierarchy
Editor main pane. By default, the first eight letters of the class name
are used to derive the header file name. You may change the header

Figure 5-9 Add Class dialog box
ser’s Guide and Reference

Hierarchy Editor
file name by typing an alternative name in the Header File textbox of
the Add Class dialog box.

Creating a derived class
After a base class exists, you may add a specialized version of that
class to the hierarchy by creating a derived class.

To create a new derived class:

1. Select the class that will act as the base class of the new
class.

2. Choose Add Derived from the pop-up menu.

You can also perform this step with the mouse. Hold the
left mouse button down and drag the cursor from the
selected class to an empty area of the window. A rubber
band line appears as you do this (Figure 5-10). Release
the mouse button.

The Create Derived Class dialog box opens (this dialog
box is similar to the Add Class dialog box.

3. Type a name for the new class.

4. Click OK.

Creating a sibling class
You may also create a new derived class as a “sibling” to an existing
class. Sibling classes have the same base class with the same access
specifiers.

Figure 5-10 Creating a new derived class using the mouse
Symantec C++ User’s Guide and Reference 5-17

5 Defining Classes and Their Hierarchies

5-18 Symantec C++ U
To create a new sibling class:

1. Click on the class whose base class is to be the base class
of the new class.

2. Choose Add Sibling from the pop-up menu. The Create
Derived Class dialog box is displayed.

3. Type a name for the new class.

4. Click OK.

Editing inheritance relationships
As your application evolves, you may want to restructure your class
hierarchy. You can add and delete connections between classes, as
well as change the inheritance attributes.

In altering inheritance relationships, Class and Hierarchy Editors
change only the class declarations, not references to base classes and
their members in a derived class’s constructors or functions. If such
references exist, you must change them manually.

Connecting to a base class
You can connect a class to a base class, to make the former a
derived class of the latter.

To make an existing class a base of another existing class:

1. Click on the class that is to be the derived class.
ser’s Guide and Reference

Hierarchy Editor
2. Choose Connect Base from the pop-up menu. The Add
Base dialog box opens (Figure 5-11).

3. From the listbox, select the class (or classes) that will be
the derived class’s base class.

4. Select the desired access specifier. Check Virtual if virtual
inheritance is desired.

5. Click OK. The display changes to show the new
inheritance relationship.

You can also connect to a base by using the mouse in the graphical
display. Click on the class that is to be the base class. Holding down
the mouse button, drag the rubber-band line to the class that is to be
the derived class. (The cursor changes to a universal “No” sign when
positioned over a class that cannot become a derived class of this
base.) Release the mouse button. The class is publicly derived from
the base.

Deleting a connection
Just as you can connect a class to a base class, you also can
disconnect a derived class from a base class.

To delete an inheritance relationship:

Figure 5-11 Add Base dialog box
Symantec C++ User’s Guide and Reference 5-19

5 Defining Classes and Their Hierarchies

5-20 Symantec C++ U
1. Click on the line connecting the base and derived
classes. The line is highlighted to show that it is selected
(Figure 5-12).

2. Choose Delete Base Connection from the pop-up
menu.

3. When the message box requests confirmation, click Yes
to delete the base connection.

Changing base class
You can move a base class connection to change the base of a
derived class.

To change a class’s base class:

1. Click on the line connecting the derived class and its
current base.

The line is highlighted to indicate that it has been
selected. Note that at the end nearest the base class,
there is a small black box (referred to as the line’s
“handle”).

2. Click on the line’s handle. Holding down the left mouse
button, drag the handle over the class that is to be the
derived class’s new base class.

3. When the message box requests confirmation, click Yes
to change the base connection.

Editing inheritance attributes
You can change a derived class’s base class access specifier and
virtual inheritance flag.

To edit the base class access specifier:

1. Click on the line connecting the base and derived
classes. The line is highlighted to show that it is selected.

Figure 5-12 Highlighted base-derived connection
ser’s Guide and Reference

Hierarchy Editor
2. Choose Edit Base Attributes from the pop-up
menu. The Edit Base Attributes dialog box opens
(Figure 5-13).

3. Select the desired access specifier. Check Virtual if virtual
inheritance is desired. Click OK.

If you are editing several connections simultaneously and the access
specifiers are not identical, a Don’t Change option becomes
available. This lets you change the Virtual specifier without affecting
the various access specifiers. You may, however, check Public,
Protected, or Private instead, and all connections are given that
access specifier.

Working with class members
After creating a class, you can implement its functionality through
member data and functions. You may add, delete, and edit class
members through the Members and Source child windows.

A list of members of the currently selected class is displayed in the
Members child window (Figure 5-14). By default, the member list is
sorted into three categories: Data, Functions, and Typedefs. Within
each of these categories, items are sorted alphabetically. The colored
diamond in front of each member identifies the access as public
(green), protected (yellow), or private (red). Lists following each

Figure 5-13 Edit Base Attributes dialog box
Symantec C++ User’s Guide and Reference 5-21

5 Defining Classes and Their Hierarchies

5-22 Symantec C++ U
category header can be collapsed or expanded by clicking on the
triangular button to the left of the category name.

Adding a class member
The first step in class implementation is to declare the data and
function members.

To add a class member:

1. Activate the Members child window.

2. Choose Add from the Member menu or from the
pop-up menu. The Add Member dialog box opens
(Figure 5-15).

3. Type the member declaration. The member may be a
data item (for example, int nDogs), a function (for
example, int NumDogs()), or a typedef (for example,
typedef int DOGCOUNT). Do not type any storage
specifiers into the declaration textbox; these are added
by the Hierarchy Editor.

Figure 5-14 Members child window

Figure 5-15 Add Member dialog box
ser’s Guide and Reference

Hierarchy Editor
4. Select the desired access and storage specifiers. Check
the Inline check box for an inline function.

5. Click OK.

The new member is added to the appropriate list in the Members
child window and to the class declaration in the header file. If the
new member is a function, an empty function is added to the
appropriate source file. If a new source file is created, that file is
added to the project.

By default, the first eight letters of the class name are used to derive
the source file name for new functions. You can change the file
name by entering an alternative name in the Source File textbox of
the Add Member dialog box.

Deleting a class member
Unneeded class members are easily removed.

To delete a class member:

1. Select the class member to be deleted.

2. Choose Delete from the Member menu or from the
pop-up menu.

3. When the message box requests confirmation, click Yes
to delete the member.

The declaration is removed from the header file; if the member was
a function, the function definition also is removed from the source
file.

Changing member attributes
As your class and hierarchy evolve, you may need to change certain
member attributes. For example, you may want to make a function
virtual, or data private.

To change a member’s access and storage specifiers:

1. Select the member to be changed.
Symantec C++ User’s Guide and Reference 5-23

5 Defining Classes and Their Hierarchies

5-24 Symantec C++ U
2. Choose Edit Attributes from the Member menu or from
the pop-up menu. The Change Member Attributes
dialog box opens (Figure 5-16).

3. Select the desired access and storage specifiers. Check
Inline for an inline function. Click OK.

If you are editing several members’ attributes simultaneously and
their access specifiers are not identical, a Don’t Change option
becomes available in the Access group box. Similarly, if the storage
specifiers are not identical, a Don’t Change option is displayed in the
Storage group box. These options allow you to change other
member attributes without affecting the original access or storage of
each member, respectively. You may, however, select a particular
access or storage specifier, and all members are given that attribute.

The class declaration in the header file is modified and the Members
display is updated to reflect the changes.

Viewing and editing member source
After declaring your class members, you can extend your functions
by editing the function definition in the Source child window. Also,
you can change data member types, array dimensions, and so on.

To view and edit member declarations and function definitions:

1. Double-click on the member in the Members child
window.

The member’s declaration (for data items and pure
virtual functions) or definition (for other functions) is
shown in the Source child window.

Figure 5-16 Change Member Attributes dialog box
ser’s Guide and Reference

Hierarchy Editor
2. Click in the Source child window to begin editing.
Editing operations here are identical to those in other
Source windows.

3. To save changes, choose Save from the pop-up menu.

Changes made to a function’s argument and return types are updated
automatically in the class declaration. The Members child window is
updated when the source is saved.

Viewing and editing source files
At times it is useful to view and edit the entire file containing the
class declaration or the class’s functions.

 To view and edit the header file containing the class declaration:

1. Click on the class in the Hierarchy Editor window.

2. Choose Show Header from the pop-up menu.

A Source window containing the contents of the class
header file opens.

3. Edit the class declaration as desired.

You may add or delete class members as you would
without the Hierarchy Editor. However, if you add
function declarations, you must add the function
definitions to the source file manually as well.

4. Save your changes by choosing Save from the Source
window’s File menu.

5. To close the Source window, choose Close from the File
menu.

6. Click on the Hierarchy Editor window. If you have made
changes to the header file, a message box asks whether
it is OK to reparse. Click Yes.

7. Click on the class whose declaration you just edited to
see the member changes updated in the Members
window.
Symantec C++ User’s Guide and Reference 5-25

5 Defining Classes and Their Hierarchies

5-26 Symantec C++ U
To view and edit the source file containing member function
definitions:

1. Select a member function from the Members child
window.

2. Choose Show Source from the Member menu or from
the pop-up menu.

The file containing the member function’s source code is
opened for editing in a Source window.

3. Edit the member functions as desired.

You may edit member functions as you would without
the Hierarchy Editor. However, if you change function
arguments or return types, or add new functions, you
must modify or add the function declarations manually in
the header file as well.

4. Save your changes by choosing Save from the Source
window’s File menu.

5. To close the Source window, choose Close from the File
menu.

6. Click on the Hierarchy Editor window. If you have made
changes to the source file, a message box asks whether it
is OK to reparse. Click Yes.
ser’s Guide and Reference

Editing
Program Code

6

Prog

full-

ram code is edited in Source windows. The Source window is a
featured text editor, with many options and features you will find

particularly useful when editing C and C++ source code. Subsets of
Source window functionality are also available in the Source pane of
the Class Editor and in the Source child window of the Hierarchy
Editor.

In addition to its role in editing your project’s code, you can use the
Source window for monitoring program execution while debugging.
See Chapter 24, “Commands Available in Debugging Mode,” for
more information.

Chapter 21, “Text Editor Reference,” contains descriptions of all
Source window menu commands, toolbar icons, dialog boxes, and
options. Refer to it once you’ve read this chapter and you need more
details about specific aspects of the editor.

If you need to know the key combination used to execute a
particular editor command, refer to the Symantec C++ IDDE Help. It
contains a reference to all key combinations for every key binding
set.

Role of the Text Editor
The purpose of the IDDE text editor is to create, examine, and
modify your project’s source files. Because these files are standard
text files, you can, in principle, use any text editor to work with
them. However, the IDDE text editor is designed especially to edit C
and C++ source files and to work in concert with other IDDE tools.

Anyone familiar with Windows can get started quickly with the IDDE
text editor because it uses standard Windows editing commands. In
addition, the text editor has some features that make working with C
and C++ files easier. For example, the editor can automatically
indent or unindent after braces and can check delimiters.
Symantec C++ User’s Guide and Reference 6-1

6 Editing Program Code

6-2 Symantec C++ U
In addition, the text editor can display keywords, preprocessor
directives, and comments in special font styles and colors. This
technique helps track errors in source code while you are editing.
For example, an unmatched comment (/* without a matching */)
turns a large part of the code a different color, making it obvious
where the problem lies. Also, keywords and preprocessor directives
are easier to spot when they are in a different color or font style.
Misspelled keywords can be caught immediately when they remain
displayed in the default font.

Source windows are an integral part of the IDDE environment and
work together with other IDDE windows to make application
development easier. For example, the IDDE automatically saves all
files open in Source windows when you rebuild your project. During
compilation, error messages are displayed in the Output window;
when you double-click on an error message, the IDDE opens a
Source window on the corresponding source file, if necessary, and
then jumps to the line in the source code that caused the error.

The Source Window
The Source window is shown in Figure 6-1.

Most of your work with a Source window is in the editing area. This
is where text is displayed and edited, as described later in this
chapter. The Source window contains a typical IDDE window menu

Figure 6-1 Source window
ser’s Guide and Reference

The Source Window
and toolbar; a pop-up menu is available by right-clicking in the
editing area. Complete information about the menus and toolbar is
contained in Chapter 21, “Text Editor Reference.”

The status bar, shown in Figure 6-2, provides information about the
current state of the file being edited.

Information string
Displays information about the state of the current function. For
example, the message Pattern not found is displayed when the
Find command is unable to locate the pattern you specified.

Modification flag
Displays Mod if the file has been modified since it was last saved.

Insertion mode
Displays Ovr when the typing mode is set to overtype. When the
typing mode is set to insert, nothing is displayed in this field. Toggle
the insertion mode with the Insert key.

Read-only flag
Displays Rd when the file is set to read-only. When the file is in
read/write mode, nothing is displayed in this field. The read-only
attribute is set in the Current Buffer Options dialog box described
later in this chapter.

Line number
Displays the line number of the insertion point.

Column number
Displays the column position of the insertion point.

Figure 6-2 Source window status bar

Line number

Insertion mode

Read-only flag

Modification flag

Information string

Column number
Symantec C++ User’s Guide and Reference 6-3

6 Editing Program Code

6-4 Symantec C++ U
File Manipulation
The IDDE lets you open as many different files as your computer’s
memory allows. You can open multiple views of one file; changes
made in one window will be made in all.

Creating files
To create a new file, choose New from the IDDE’s File menu. An
empty Source window opens, and you can begin typing. Note that
the new file is not actually created on disk until you save it.

Opening files
To open a source file (or any text file), choose Open from the
IDDE’s File menu, or choose Open from a Source window’s File
menu. A standard Windows File Open dialog box is displayed.
Select the file you want to edit and click OK. The file is opened for
editing in a new Source window.

There are additional ways to open a file for editing:

• Choose a file from the list of recently opened files at the
bottom of the IDDE’s or Source window’s File menu.

• Double-click on a filename in the Project window.

• Click New! in a Source window to open another view of
the same file.

• Choose Load from the Source window’s File menu. The
file you select opens in the same Source window,
replacing the previous file.

Saving files
To save the file in the active window, choose Save from the Source
window’s File menu. If the file is untitled, the editor displays the
File Save As dialog box to let you name it. Otherwise, it saves the
file under its current name. This procedure saves only the file in the
active Source window.

To save the files in all Source windows, choose Save All from the
Source window’s File menu. The editor displays the Save As dialog
box for any untitled file.
ser’s Guide and Reference

File Manipulation
To save an unnamed file or a named file under a new name, choose
Save As from the File menu. The text editor displays the File Save
As dialog box, as shown in Figure 6-3.

Enter a name for the file and click OK.

Writing blocks of text to files
By choosing Write Block from the Source window’s pop-up menu,
you can write the currently selected text block to a new file or
append the block to an existing file. This is useful when, for
example, you want to remove some functions from a file and place
them in a separate file.

Printing files
To print the file in the active window, choose Print from the Source
window’s File menu. The Text Print dialog box opens, as shown in
Figure 6-4.

Figure 6-3 File Save As dialog box

Figure 6-4 Text Print dialog box
Symantec C++ User’s Guide and Reference 6-5

6 Editing Program Code

6-6 Symantec C++ U
The contents of the Text Print dialog box depend on the default
printer you specify in the Windows control panel. Make any
necessary changes in the dialog box, then click OK to print.

Closing files
To close a file in a Source window, choose Close from the Source
window’s File menu, or click the close button. If you’ve edited the
file since the last time it was saved, the IDDE displays a dialog box
asking if you would like to save the file.

Text Editing
This section describes the text editing features available in the
Source window.

Typing mode
Source windows support two typing modes: overtype, which
replaces characters as you type; and insert, which adds new
characters to the file. You can toggle the typing mode between
overtype and insert modes by using the Insert key. (Press Alt+I if you
selected the Brief key binding set.) The typing mode is displayed in
the status bar. A change in typing mode applies to all open Source
windows, not just to the active window.

Word wrap
Because the editor is designed for source files, word wrap is not
enabled by default. You must press the Enter key to start a new line.
When you type past the right edge of the window, the text scrolls
horizontally. You can enable word wrap and set a right margin either
locally or globally using the text editor options.

Indentation
By default, the editor automatically indents a new line to the same
depth as the previous line. You can set several indentation options,
such as autoindent, tab width, and indent/unindent after braces.

It also is possible to change the indentation of a selected block of
text by choosing Indent Block or Unindent Block from the
Format Text submenu of the Source window’s pop-up menu.
ser’s Guide and Reference

Text Editing
Moving around in a file
You can move the insertion point in a file by using the mouse or
keyboard in the standard Windows text-editing manner. In addition,
you can jump to specific points in a file using commands from the
Source window’s Goto menu.

Jumping to a matching delimiter
A common source of problems in C and C++ programming is
parentheses (()), brackets ([]), and braces ({}) that don’t match.
To find the other half of a pair of these delimiters, position the
insertion point in front of one of the delimiters and choose
Matching Delimiter from the Goto menu. The insertion point then
moves to the front of the other half of the pair.

Delimiter checking can also be done automatically using the text
editor options described later in this chapter.

Note
The IDDE editor looks for any parenthesis, bracket,
or brace, including text in strings and comments.

Jumping to a specific line
To jump to a specific line, choose Line from the Goto menu. The
Goto Line dialog box, shown in Figure 6-5, opens.

Type the line number in the textbox and click OK. The editor moves
the insertion point to the beginning of the specified line.

Figure 6-5 Goto Line dialog box
Symantec C++ User’s Guide and Reference 6-7

6 Editing Program Code

6-8 Symantec C++ U
Jumping to a function
To jump to a specific function, choose Function from the Goto
menu. The Goto Function dialog box, shown in Figure 6-6, opens.

You can select a function name from the scrolling list or type in a
function name. The insertion point then moves to the beginning of
the specified function.

Jumping to a bookmark
The IDDE text editor lets you position bookmarks anywhere in your
files by choosing Bookmark from the Source window’s Goto menu.
The Bookmarks dialog box, shown in Figure 6-7, opens.

To use bookmarks, first position the insertion point where you want
the bookmark to be located. Then choose Bookmark from the Goto
menu, select a bookmark, and click on the Drop button. When you
want to return to this location, click on this entry’s name in the list of
bookmarks, then click on Goto.

Figure 6-6 Goto Function dialog box

Figure 6-7 Bookmarks dialog box
ser’s Guide and Reference

Text Editing
Selecting text
Text selection is accomplished using one of two standard
techniques: clicking and dragging the mouse or shift-clicking. The
IDDE text editor provides additional modes for text selection using
the Column and Line commands in the pop-up menu’s Select
submenu.

Both commands require that you first select a block of text in the
standard manner. Column changes the currently selected text block
into a column-oriented select block; only the characters in the
columns between the start and end of the original text block are
selected. This is shown in Figure 6-8.

Line changes the currently selected text block into a line-oriented
select block; all the lines from the start to the end of the original text
block, including the first and last lines, are selected.

Figure 6-8 A column select block
Symantec C++ User’s Guide and Reference 6-9

6 Editing Program Code

6-10 Symantec C++ U
This is shown in Figure 6-9.

Choosing Normal from the Select submenu of the pop-up menu
changes a column- or line-oriented text block back to the original
selection. Cancel deselects the current selection block; this can also
be accomplished by clicking somewhere outside the selected text.

The text editor supplies standard Windows functions for cutting,
copying, pasting, and deleting text. These functions can be accessed
through either the Edit menu or the pop-up menu. In addition, by
clicking and dragging a block of selected text, you can reposition the
text anywhere in the buffer. Press the Control key while releasing
the block to copy rather than move the block. When you are
dragging text blocks around in this way, a small outlined box is
drawn next to the cursor to indicate this mode.

Searching and replacing
The IDDE editor has powerful text-based search and replace
functions that let you search open files for a string and replace one
string with another. In addition, you can search through any set of
source files, whether or not they are open or in your project.

Figure 6-9 A line select block
ser’s Guide and Reference

Text Editing
Finding a string
To search for a string, choose Find from the Source window’s Edit
menu. The dialog box shown in Figure 6-10 opens.

If you select some text before opening the Find dialog box, the
selected text becomes the default search pattern. You can either use
this text as it appears, select a previous string from the drop-down
list, or type in a new string. Then click on the Next (or Previous)
button. The editor locates and selects the next (or previous)
occurrence of the string in the active file. You can repeat the search
in the same direction by choosing Repeat Find from the Edit menu.
If the pattern is not found, the editor returns to the current insertion
point and displays Pattern not found in the status line.

By checking Regular Expression in the Find dialog box, you can use
the wildcard characters ? and * in your search string. The ?
character matches any single character, while the * character
matches any string of consecutive characters. Regular expressions
permit more powerful text searches.

Replacing a string
To replace an occurrence of a string in your file with another string,
choose Replace from the Source window’s Edit menu. The Replace
dialog box opens, as shown in Figure 6-11.

Figure 6-10 Find dialog box

Figure 6-11 Replace dialog box
Symantec C++ User’s Guide and Reference 6-11

6 Editing Program Code

6-12 Symantec C++ U
Type the search string or regular expression in the Pattern textbox,
just as you did in the Find dialog box described earlier. Then type
the replacement string in the Replacement textbox. Note that
wildcards cannot be used in the Replacement textbox. You can also
select previous search and replacement strings from the drop-down
list. Begin the replacement by clicking OK.

If you check the Confirm Changes option, the editor scrolls the
display to each occurrence of the search string, selects it, and asks
whether you want to replace it by displaying the Confirm
Replacement dialog box in Figure 6-12.

Click on Yes to replace the string and continue searching, or click on
No to continue searching without replacing. Click on Cancel to stop
searching. If you do not check Confirm Changes, the editor replaces
all occurrences of the search string without confirmation messages.

You can use the Undo command to undo the entire set of
replacements of the search string.

Searching through multiple files
The text editor’s global find feature provides a powerful means of
locating a string in any set of files. For example, this feature is useful
for:

• Locating undefined symbols
• Changing function, variable, or class names
• Fixing references to a function with changed parameters

To search for a string in multiple files, choose Global Find from the
Source window’s Edit menu.

Figure 6-12 Confirm Replacement dialog box
ser’s Guide and Reference

Text Editing
The Global Find dialog box opens, as shown in Figure 6-13.

To perform a global search, first specify the set of source files you
want to search. You can choose to search:

• All source files in the current project
• All files listed in the Search window (which opens after

the first search)
• All files matching the criteria you specify, including

filename, directory, date, time, and file attributes

Next, specify the string or regular expression to search for. (As with
the Find command, you can preselect the search text before
choosing Global Find.) When you click OK, the editor opens the
Search window. The editor searches through the indicated files and
lists the names of files containing a match in the Search window.

By double-clicking on a filename, you can open the file; the first
occurrence of the pattern is highlighted. You can continue searching
for your string or expression in that file by choosing Repeat Find
from the Source window’s Edit menu. For more information, see
Chapter 21, “Text Editor Reference.”

Figure 6-13 Global Find dialog box
Symantec C++ User’s Guide and Reference 6-13

6 Editing Program Code

6-14 Symantec C++ U
Undoing edits
You can undo typing, cutting, pasting, and string-replace operations
by choosing Undo from the Edit menu. Undo multiple edits by
repeatedly selecting the Undo command. You can set the number of
editing operations that can be undone in the text editor options.

Text Editor Options
Global text editor options are set in the Editing/Browsing Settings
dialog box, shown in Figure 6-14. To open this dialog box, choose
Text Settings from the Edit menu. (You can also choose Editing/
Browsing Settings from the Environment menu; in this case you
will have access to Class and Hierarchy Editor options as well.)

The Editing/Browsing Settings dialog box is a tabbed dialog that
contains numerous options for different aspects of the text editor:

• The Text page contains options for indentation, cursor
styles, keyboard emulation, and text editor font.

• The C++ page lets you set options to enable C++ mode
globally, check delimiters, indent after braces, auto-align
comments, and add keywords to the keyword dictionary.

• The Keys page lets you customize key bindings and
assign key combinations to macros.

Figure 6-14 Editing/Browsing Settings dialog box
ser’s Guide and Reference

Text Editor Options
• The Display page lets you select special colors and font
styles for keywords, comments, and preprocessor
symbols.

• The Backup page lets you set options for backing up
files.

• The General page lets you set the maximum undo level
and select a key binding file.

Several text editor options can be set on a buffer-by-buffer basis. To
set these local options, choose Current Buffer Settings from the
Edit menu. The Current Buffer Options dialog box, shown in
Figure 6-15, opens.

This dialog lets you override global indentation options, set word
wrap, and set the buffer to read-only.

You can find detailed information about text editor options in
Chapter 21, “Text Editor Reference.”

Macros
The text editor has powerful macro facilities. You can record a
sequence of keystrokes, save the sequence as a named macro, assign
a keyboard shortcut to the macro, place the macro in the Macro
menu, edit the macro, and so on. To record a macro, choose Record
Macro from the Macro menu; to end the macro, choose Stop
Recording. You can play back the stored sequence by choosing
Play Macro.

Figure 6-15 Current Buffer Options dialog box
Symantec C++ User’s Guide and Reference 6-15

6 Editing Program Code

6-16 Symantec C++ U
Compiling Files and Checking Errors
The IDDE makes it easy to iteratively edit and check your source
code. To save and compile the current buffer, choose Compile from
the Source window’s File menu. The IDDE compiles the file using
the current project build settings. If the compilation is successful, the
file is marked as compiled. If the compilation generated errors, you
can quickly locate the line in your source code that generated the
error by double-clicking on the error in the Output window.

For more information about compiling files and building the project,
see Chapter 8, “Testing an Application.”
ser’s Guide and Reference

Adding Look and Feel
with Resources

7

Any a

inte

pplication written for the Windows environment needs an
rface to the user that gives it the “look and feel” of a Windows

application. Various standard mechanisms are available to create this
look and feel, and resources are some of the most important of
these. Resources such as menus and dialog boxes define the
interface to an application.

ResourceStudio contains tools for creating and modifying the
resources you will need. This chapter defines the different types of
resources and explains how to use ResourceStudio to create three
basic resources—menus, dialog boxes, and bitmaps. The final
section describes how to work with the identifiers by which
resources are referenced in the source code.

For more information about ResourceStudio, see the “ResourceStudio
Reference.” For more information on resources and programming
with resources, refer to the following texts:

• Programming Windows 3.1 by Charles Petzold

• Microsoft Windows Programmer’s Reference, Volume 4:
Resources

What Are Resources?
Resources are structured data objects that define Windows user
interface elements. When you choose a command from a menu or
select options from a dialog box, for example, you are interacting
with an application’s resources. Predefined resource types include
bitmaps, cursors, icons, fonts, dialog boxes, menus, accelerators,
strings, and version information.
Symantec C++ User’s Guide and Reference 7-1

7 Adding Look and Feel with Resources

7-2 Symantec C++ U
An application’s resources typically are defined in a resource script
file (.rc). Each resource definition contains information and data
relevant to that resource type, as well as the identifier by which the
resource is referenced in the source code. Resource script files are
created and edited with ResourceStudio.

Resources are compiled by a special resource compiler and are
linked to the Windows application separately from the application
code. This modular design enables you to modify the appearance of
an application without changing, or even accessing, the program
source code. Separating resources from code also makes it easier to
use the same resource definitions for multiple applications.

Resource Types
You can create and edit the following resource types in
ResourceStudio:

Bitmaps
Bitmaps are used by an application to display pictures on the screen.
Each bit, or group of bits, in a bitmap represents one pixel of the
image. Bitmaps may be any size you specify.

Cursors
Cursors are small bitmaps, usually 32 x 32 pixels in size, that
represent the mouse pointer. Cursor images may contain areas that
are transparent, allowing the screen background to show through
unused parts of the cursor image. Cursors also may contain inverted
areas in which the screen background color is reversed.

In addition to image information, a cursor resource also specifies the
cursor’s hot spot, the exact pixel in the image that maps to the
mouse pointer’s screen location.

Icons
Icons are small bitmaps, usually 32 x 32 or 16 x 32 pixels in size, that
represent applications or actions within an application. For example,
when you minimize a Windows application, an icon is displayed on
the screen to represent the minimized program. Like cursors, icons
may contain transparent and inverted areas.
ser’s Guide and Reference

Resource Types
Fonts
A font resource is a collection of up to 256 bitmaps of identical
height. A font typically represents a character set, but it also may be
used for more efficient management of bitmaps not representing
characters.

Dialog boxes
Dialog boxes are windows that communicate information and
receive user input. For example, a dialog box may let the user set
program options, or alert the user to an error and ask how to
proceed. To enter information and make selections in a dialog box, a
user manipulates graphical elements called controls. Commonly used
controls include buttons, check boxes, listboxes, textboxes, and
scroll bars.

A dialog box resource is a complex set of data describing each
control in detail, as well as general properties such as the dialog box
size and location.

Menus
Menus are hierarchical lists of program commands and options.
When a user chooses an item from a menu, either an action is taken
or another menu opens to provide additional commands. A menu
resource identifies the available commands, specifies their individual
styles and attributes, and determines the order in which they appear.

Accelerators
Accelerators are key combinations a user presses to perform a task in
an application and are frequently used as shortcuts to menu choices.
An accelerator resource contains a collection of key combinations
and associated commands.

Strings
Strings are text that an application may use in window titles, menus,
dialog boxes, error messages, and so on. A string resource is a table
of strings.

Version information
The Version Information resource contains version information for
Windows .exe and .dll files, such as version number, file
description, company name, and copyrights.
Symantec C++ User’s Guide and Reference 7-3

7 Adding Look and Feel with Resources

7-4 Symantec C++ U
User-defined resources
User-defined resources contain data that you define and use in your
program in any manner you choose. For example, you may want to
attach a table of data or a block of text to your executable file.
ResourceStudio allows you to include these types of data in your
application’s resources and to edit the data in hexadecimal format.

Using ResourceStudio
ResourceStudio can be used to:

• Create new resources in script or binary form

• Edit resources, even those already linked to an
executable or DLL

• Copy resources between files

This section explains how to start ResourceStudio and use it to create
resource files. Detailed steps are provided for creating three basic
resources: menus, dialog boxes, and bitmaps. This section also
outlines several useful features of ResourceStudio, such as drag and
drop.

Starting ResourceStudio
You can start ResourceStudio using any one of several commands
available in the IDDE’s Resource menu:

• Edit opens the current project’s resource (.rc) file for
editing.

• New opens the current project’s resource file. A dialog
box then opens, allowing you to create a new resource.

• Open opens a dialog box from which you can select for
editing any file that contains resources.

• Settings opens ResourceStudio to the Settings dialog
box, but does not load any resource file.

You can also double-click on a resource file in the Project window
to open that file for editing with ResourceStudio.
ser’s Guide and Reference

Using ResourceStudio
To create a new resource file, choose Open from the Resource
menu, and in the File Open dialog box click Cancel. Then, double-
click on the ResourceStudio icon on the desktop. The Resource
Studio Shell window opens (Figure 7-1).

The Shell window is ResourceStudio’s main window and contains
the main menu and toolbar. From this window, you can create and
open resource files and set ResourceStudio preferences.

Another window that will open as you work is the Property Sheet.
The Property Sheet does not open immediately, but rather opens
when it is first needed. While creating and editing resources, you can
use the Property Sheet to view and edit properties of the currently
selected object. (In this context, “object” refers to either a resource as
a whole or to an element within a resource, such as a dialog box
control or a menu item.) Some types of objects have multiple pages
of properties; to switch between pages, simply click on the tabs.

Creating a new resource file
Resources are contained in resource files. You can use
ResourceStudio to create and edit most types of files that store
Windows resources. For example, you can edit the resources of
executable files even if you do not have the original source code.

To create a new resource file, choose New from the File menu. The
New File dialog box opens (Figure 7-2), listing the types of resource
files that can be created with ResourceStudio.

Figure 7-1 Resource Studio Shell window

Figure 7-2 New File dialog box
Symantec C++ User’s Guide and Reference 7-5

7 Adding Look and Feel with Resources

7-6 Symantec C++ U
Select the type of resource file you want to create (see Table 7-1).
Note that resource script (.rc) and binary resource (.res) files
usually contain more than one resource. If you are starting to create
resources for a new application, .rc is likely to be your choice of
file type. Resource scripts can contain any type of resource.

Resources such as icons can be contained either in individual icon
resource files (.ico) or with other resources in a resource script file.
Some resources, such as dialog boxes and menus, are contained
only in .rc or .res files. Thus, these resource options do not
appear separately in the New File dialog box.

The Platform option in the New File dialog box lets you create
resource files that are compatible with Windows 3.1, Windows NT,
or Windows 95. You can also elect to create resources for an MFC
application by checking Support MFC.

After selecting a type of resource file, click OK. The window that
opens next depends on the type of file you specified. If you selected
one of the file types containing a single resource (icon, cursor,
bitmap, or font), that resource type’s editor opens in a separate
window.

Table 7-1 Resource file types

File Type Contains
Resource script (.rc) Any type or combination of resources in

text format
Binary resource (.res) Any type or combination of resources in

binary format
Icon (.ico) A single icon resource in binary format
Cursor (.cur) A single cursor resource in binary format
Bitmap (.bmp) A single bitmap resource in binary format
Font (.fnt) A single font resource in binary format
ser’s Guide and Reference

Using ResourceStudio
If you selected Resource Script or Binary Resource, the Browser
window opens (Figure 7-3).

The Browser window has three main areas:

• Resource Types: A listbox containing all the resource
types found in the current file.

• Resources: A listbox containing resources of the currently
selected type.

• Preview/Edit: A display of the selected resource.
Resources also are opened for editing in this area when
created, or by choosing Edit Resource from the File
menu.

When a new resource file is first opened, the Resource Types and
Resources listboxes are both empty.

Figure 7-3 Browser window

Preview/Edit AreaResources

Resource Types
Symantec C++ User’s Guide and Reference 7-7

7 Adding Look and Feel with Resources

7-8 Symantec C++ U
Note
ResourceStudio has several subprograms, each of
which is used to edit a particular resource type. In
this chapter, for example, you will use the Menu
editor, Dialog box editor, and Bitmap editor. Each
individual resource editor can either be opened in a
separate window or can use the right pane of the
Browser window from which it is launched. The
latter is the default behavior in most circumstances.

Editing a resource file
Besides the resource files listed in the previous section, you can edit
the resources of executable files, even though you don’t have the
original source code. By choosing Open from the Shell window’s
File menu, you can open files of any type listed in Table 7-1, plus
files of the following types:

• Windows executable (.exe): Bound resources of any
type

• Dynamic-link library (.dll): Bound resources of any
type

Warning
Do not modify or save the resources of a running
application. Saving a resource usually changes the
locations of the resources within the file.
ser’s Guide and Reference

Using ResourceStudio
Creating a new menu resource
The main interface between the user and a Windows application is
generally the application’s menu. The IDDE’s Resource menu is a
good example, as shown in Figure 7-4.

A menu is a hierarchical structure containing pop-up items, menu
items, and separators.

• Pop-up items open a drop-down menu box containing
menu items and additional pop-ups. The top-level items
that are displayed on the window’s menu bar are usually
pop-up items. A pop-up item can be thought of as a
container for other items (including other pop-ups).

• Menu items usually constitute the majority of items in
drop-down menus. When a menu item is chosen,
Windows sends a message containing the item’s
command identifier to the application.

• Separators are lines that divide the menu into logical
groups.

Figure 7-4 A typical menu

Menu items

Pop-up item

Separator
Symantec C++ User’s Guide and Reference 7-9

7 Adding Look and Feel with Resources

7-10 Symantec C++ U
To create a new menu resource, choose New Menu from the
Resource menu of the Browser window. The Menu editor opens in
the right pane of the Browser window (Figure 7-5).

Note
While a resource editor is open in the Browser
window, the Browser window’s menu is replaced
by that of the particular resource editor. The editor’s
toolbar is displayed at the top of the right pane,
below the Browser window’s toolbar.

The new menu resource initially contains a single pop-up item and a
menu item. The list of items is indented to show the hierarchy. Pop-
up items are labeled POPUP, menu items are labeled MENUITEM,
and separators are labeled SEPARATOR. The currently selected item
is enclosed in a box; to select any item, click on it. The Property
Sheet shows properties of the selected item.

The Test menu window (Figure 7-6) opens at the same time. You
can test the menu in progress at any time in this window.

Figure 7-5 Menu editor open in Browser window

Figure 7-6 Test menu window
ser’s Guide and Reference

Using ResourceStudio
Adding a pop-up item
You can start creating a menu by adding a new pop-up item to the
menu bar. To do so, click on Menu at the head of the item list. Then
choose New Popup from the Menu menu. The new pop-up item is
inserted at the start of the list.

The Property Sheet displays the properties of the new pop-up item
(Figure 7-7). At this point, you probably want to change only the
menu name, which is contained in the Text field.

When changing the menu name, you can also assign an activation
key to the menu. Put an ampersand (&) in front of the corresponding
letter in the text.

Adding a menu item
To add one or more menu items to a drop-down menu, first make
sure that the pop-up item is selected. Then choose New Item from
the Menu menu. The new menu item is inserted into the hierarchy.

The Property Sheet displays the properties of the new menu item
(Figure 7-8). You can change the item’s text and add an activation
key. As with pop-up items, you add an activation key by typing an
ampersand (&) in front of the corresponding letter in the text.

Figure 7-7 Properties of a Pop-up menu

Figure 7-8 Properties of a menu Item
Symantec C++ User’s Guide and Reference 7-11

7 Adding Look and Feel with Resources

7-12 Symantec C++ U
The ID field contains the command ID, which is sent to the
application when the user chooses this menu item. New command
and resource IDs are assigned automatically to new objects when
they are created; you can also change ID names and numerical
values as desired. For more information on resource IDs, see the
section “Managing Resource IDs” later in this chapter.

Adding separators
Separators enhance the readability of menus. To insert a separator
after the currently selected item, choose New Separator from the
Menu menu.

Editing menus
The normal editing operations (cut, copy, paste, and delete) work
with items in a menu. Note that when you perform one of these
operations on a pop-up item, all of the items it contains are affected
as well.

You can rearrange menu items quickly by clicking and dragging. To
move an item, drag the item to the location where it should be
inserted. If you hold down the Control key while dragging, a copy of
the selected item is inserted. The copy is given a new, unique
resource ID.

You can also rearrange menus with the arrow keys. To move an item
up or down within its present level in the hierarchy, press Ctrl+Up
Arrow or Ctrl+Down Arrow. To move an item horizontally, use
Ctrl+Right Arrow or the Ctrl+Left Arrow.
ser’s Guide and Reference

Using ResourceStudio
Closing the menu editor
After you have arranged your new menu, close the Menu editor by
choosing Close Editing from the File menu. The Browser window
is updated to show the new resource (Figure 7-9).

The Resource Types list contains an entry called Menu to show that
you have at least one menu resource. The Resources list contains the
ID of your menu resource. The Preview/Edit area shows a preview
of the new menu.

The Property Sheet displays the menu resource’s ID and memory
options (Figure 7-10).

To edit a menu resource, double-click on its ID in the Resource list,
or select the resource and choose Edit Resource or Edit in
Separate Window from the File menu.

Figure 7-9 Browser window after creating menu resource

Figure 7-10 Properties of a menu resource
Symantec C++ User’s Guide and Reference 7-13

7 Adding Look and Feel with Resources

7-14 Symantec C++ U
Creating menus with accelerators and item help
As you create menus, you usually want to assign accelerator key
combinations and item help strings at the same time. To do so, you
must set up the string and accelerator tables before adding menu
items, as outlined here:

1. Create a string table resource by choosing New String
Table from the Browser window’s Resource menu.

2. Close the String Table editor by choosing Close Editing
from the File menu.

3. Create a new accelerator table resource by choosing
New Accelerator Table from the Browser window’s
Resource menu.

4. Close the Accelerator Table editor by choosing Close
Editing from the File menu. Note the accelerator table’s
resource ID.

5. Create a new menu resource by choosing New Menu
from the Browser window’s Resource menu.

6. Make the new menu’s resource ID the same as that of the
accelerator table resource. In the Property Sheet, select
the accelerator table resource’s ID from the drop-down
list in the ID field. You now can add menu items with
accelerators and item help.

To set a menu item’s accelerator, click on the Connect tab in the
Property Sheet, then click on the Next Key. You are prompted to
press the key combination that is used as the accelerator. When you
do so, the accelerator is stored in the associated accelerator table. To
set a menu item’s help string, type the string into the Prompt field in
the Property Sheet. The string is automatically placed in the string
table.
ser’s Guide and Reference

Using ResourceStudio
To show which key combination is associated with each menu item,
add the accelerator to the item text. For readability, the accelerator is
usually separated from the command name with a tab. For example,
if you want Ctrl+F to be the accelerator for a command called Find,
enter Find\tCtrl+F into the Text field of the menu item’s
Property Sheet (Figure 7-11).

Simple guidelines for creating menus
When creating a menu, keep in mind the following points:

• Place frequently chosen options near the top of the
menu to make them more accessible to the user.

• Group related options under specific menu titles.

• Follow standard conventions to make the application
easier to use.

Windows users are accustomed to certain menu arrangements. For
example, the File menu is usually the first menu in the menu bar
and contains commands such as New, Open, and Save. You can
choose commands from the Menu menu to quickly create standard
File, Edit, and Help menus.

Figure 7-11 Menu item text, showing accelerator
Symantec C++ User’s Guide and Reference 7-15

7 Adding Look and Feel with Resources

7-16 Symantec C++ U
Creating a new dialog resource
A dialog box is a window that communicates information and
receives user input. It contains graphical elements called “controls.”
Figure 7-12 shows a typical dialog box.

The following types of controls can be included in your dialog
boxes:

• Push buttons send command codes to your application
when the user clicks on them. They trigger an immediate
action.

• Check boxes are rectangular buttons that turn options on
or off. Text describing the option is displayed to the left
or right.

• Radio buttons provide a set of options, only one of
which may be selected. They are generally arranged in
logical groups of two or more.

• Edit controls (or textboxes) are rectangular boxes used
for text entry.

• Listboxes contain a list of items, usually in text form. The
user can browse through the list and select one or more
items.

• Comboboxes combine the features of an edit control and
a listbox; they let the user select an item from a list or
type a selection into the textbox.

Figure 7-12 A typical dialog box

Edit control

Group boxCheck box

Push buttons

Radio buttons

Static text
ser’s Guide and Reference

Using ResourceStudio
• Scroll bars let the user specify a numerical option with an
analog control. (Edit controls and listboxes have their
own scroll bars and do not need a stand-alone scroll
bar.)

• Group boxes are rectangular frames with an optional
caption, used to group other controls together visually.

• Static text is used to convey information or to label
controls that do not have captions (such as edit controls).

• Pictures are used for decorative purposes. Picture types
include empty frames, solid boxes, and icons.

• Custom controls are user-defined controls implemented
in a DLL.

• User controls are user-defined controls that are not
implemented in DLLs, or whose implementation is non-
standard. (ResourceStudio treats VBX controls as user
controls.)

• The following Windows 95 controls are supported:
Animate controls, Tab controls, Tree View controls, List
View controls, Hotkey controls, Track Bars, Progress
controls, and Up/Down controls.

To create a new dialog box resource, choose New Dialog Box from
the Resource menu of the Browser window. The DialogExpress
dialog box opens (Figure 7-13).

Figure 7-13 DialogExpress dialog box
Symantec C++ User’s Guide and Reference 7-17

7 Adding Look and Feel with Resources

7-18 Symantec C++ U
DialogExpress gives you several options for simple dialog boxes
that you may use as a starting point for your own dialog box. Select
Standard and click OK. The Dialog editor opens in the right pane of
the Browser window (Figure 7-14).

At the same time, the Dialog editor toolbox (Figure 7-15) opens. This
toolbox provides shortcuts to commands in the Tool menu that let
you create the different types of dialog box control.

Figure 7-14 Dialog editor open in Browser window

Figure 7-15 Dialog editor toolbox
ser’s Guide and Reference

Using ResourceStudio
The Property Sheet shows the General, Styles, and Look properties
of the dialog box (Figure 7-16). You may want to start by changing
the dialog box title.

Type the new title into the Text field of the General properties page.

Adding a push button
Initially, a new Standard dialog has no controls. To create a new
push button:

1. Choose Push Button from the Tool menu or click on
the corresponding icon in the toolbox.

2. Click in the dialog box on the point at which you want
to position the upper-left corner of the new button. Hold
down the left mouse button and drag the cursor. A
rubber-band rectangle appears.

Figure 7-16 Properties of a dialog resource
Symantec C++ User’s Guide and Reference 7-19

7 Adding Look and Feel with Resources

7-20 Symantec C++ U
3. Release the left mouse button when the rectangle is the
proper size for the new button. A new push button is
placed in your dialog box (Figure 7-17).

The new push button is selected and highlighted. You can then
move and resize your new push button control with the mouse.

• To move a control, click and drag it to a new location.

• To resize a control, click and drag one of the eight
“handles” that appear along its edges.

You also may center the selected control in the dialog box. Choose
Vertical or Horizontal from the Center submenu of the Controls
menu.

The Property Sheet lets you modify push button properties (Figure
7-18). To change the button text, for example, change the Text field
to the desired text. As with items in menus, you can set the

Figure 7-17 Dialog box resource with new push button
ser’s Guide and Reference

Using ResourceStudio
activation key of a button or other control by typing an ampersand
(&) before the corresponding letter in the text.

Adding static text
To add static text to a dialog box (for example, an informational
message), choose Text from the Tool menu or click on the
corresponding icon in the toolbox. Then click in your dialog box
and drag the rubber-band box to the desired size.

The Property Sheet shows the properties of the static text (Figure
7-19). To change the text, edit the Text field. After entering the text,
you can resize the static control to the size of the text by dragging
the handles.

To center the text within the control, select Center from the drop-
down list in the Align/Style property. You can center the control
within the dialog box by choosing Horizontal from the Center
submenu of the Controls menu.

A static text control may contain multiple lines of text. While typing
text into the Caption field, press Ctrl+Enter to start a new line.
Likewise, insert tab characters by pressing Ctrl+Tab.

Figure 7-18 Properties of a push button control

Figure 7-19 Properties of a static text control
Symantec C++ User’s Guide and Reference 7-21

7 Adding Look and Feel with Resources

7-22 Symantec C++ U
Testing the dialog box
You can test your dialog box resource without leaving
ResourceStudio. To open the new dialog box for testing, choose Test
Dialog from the Dialog menu (Figure 7-20).

When you are testing the dialog box, ResourceStudio does not
function; you must close the test dialog box by pressing Alt+F4
before continuing.

Aligning controls
Commands are available to align controls, to space them evenly, and
to make them the same size. The following steps illustrate the three
operations:

1. Add a few odd-sized buttons to your dialog box, using
the procedure described in the section “Adding a push
button” earlier in this chapter. Place them in a horizontal
row.

2. Select all the buttons at once by clicking on one, then
holding down either the Shift or Control key as you click
on the others. You can also choose Select from the Tool
menu and drag a rubber-band box around the controls.

3. Establish one button as the “standard.” Hold down
Control and click on this button. The standard button is
highlighted in blue on your screen. Figure 7-21 shows
what your dialog box might look like. In the example,

Figure 7-20 Testing the new dialog box
ser’s Guide and Reference

Using ResourceStudio
the button labeled “#2” has been selected as the
standard.

Now you can perform any of the following alignment operations
from the Controls menu:

• To make all the buttons the same size as the standard,
choose Both from the Make Same Size submenu.

• To align the tops of the buttons with the top of the
standard, choose Top from the Align submenu.

• To even out the horizontal spacing between the buttons,
choose Horizontal from the Space Evenly submenu.

You also can move the selected controls as a unit by holding down
the left mouse button and dragging them to a new location.

Figure 7-21 Multiple selection of controls
Symantec C++ User’s Guide and Reference 7-23

7 Adding Look and Feel with Resources

7-24 Symantec C++ U
Closing the dialog box editor
After you finish working with a dialog box, close the Dialog editor
by choosing Close Editing from the File menu. The Browser
window is updated to show the new resource (Figure 7-22).

After creating a dialog box resource, you can use ClassExpress to
create a corresponding dialog box class, set up the class’s message
map, and implement dynamic data exchange and validation.
ClassExpress can be run directly from the Browser window’s File
menu. For further information, see Chapter 18, “More about
ClassExpress,” as well as Chapter 13, “Lesson 4: Add Messages with
ClassExpress,” and Chapter 14, “Lesson 5: Add a Dialog Box with
ClassExpress.”

Creating a new bitmap resource
A bitmap is a picture that may be used for informational or
decorative purposes. The Bitmap editor contains the functionality of
a typical paint program, allowing you to create pictures of any size
in 2, 16, or 256 colors.

Figure 7-22 Browser window after creating dialog box resource
ser’s Guide and Reference

Using ResourceStudio
To create a new bitmap resource, choose New Bitmap from the
Resource menu of the Browser window. The BitmapExpress dialog
box opens (Figure 7-23).

BitmapExpress allows you to set the number of colors and the initial
size of the bitmap. If you are creating a bitmap for an MFC toolbar,
you also can specify the number of buttons. For now, accept the
defaults and click OK. The Bitmap editor opens in the right-most
pane of the Browser window (Figure 7-24).

The Bitmap editor window is divided into two panes. You can draw
in either. To change the relative sizes of the panes, click and drag
the bar separating the panes.

The Bitmap editor toolbox (Figure 7-25) also opens. This toolbox
lets you choose graphics tools (also available in the Tool menu), set

Figure 7-23 BitmapExpress dialog box

Figure 7-24 Bitmap editor open in Browser window
Symantec C++ User’s Guide and Reference 7-25

7 Adding Look and Feel with Resources

7-26 Symantec C++ U
foreground and background colors, and select the line width and
background pattern.

The Property Sheet shows the General and Palette properties of the
bitmap (Figure 7-26). You can page between the two groups of
properties by clicking on the tabs. The File field specifies the bitmap
file; bitmaps are included in resource scripts by reference. If you
want to change the bitmap file’s name, type a new name into the
File textbox.

Figure 7-25 Bitmap editor toolbox

Figure 7-26 Properties of a bitmap resource

Background colorForeground color

Drawing tools

Line type Background pattern

Brush

Color palette
ser’s Guide and Reference

Using ResourceStudio
Changing bitmap size
To change the bitmap size, change the width and height in the
Property Sheet or resize the bitmap directly by dragging one of the
handles along the right and bottom edges of the bitmap.

Selecting colors and patterns
You can select drawing color and patterns from the toolbox in the
following way:

• Foreground color: Click on the color in the color palette
with the left mouse button.

• Background color: Click on the color in the color palette
with the right mouse button.

• Line type: Click in the line type display and select a line
type from the pop-up menu.

• Background pattern: Click in the background pattern
display and select a pattern from the pop-up menu.

• Brush: Click in the brush display and select a paintbrush
or spray brush from the pop-up menu. The menu is only
available when the Paintbrush or Spray brush tool is
selected; it is also available by right-clicking on these
tools.

Drawing tools
The following drawing tools are available in the toolbox or in the
Tool menu:

• Eraser: Removes all or part of the image

• Pen: Draws individual pixels or freehand lines

• Selection tool: Selects a rectangle that may be cut,
copied, flipped, or inverted

• Brush: Paints freehand lines with the selected brush

• Spray brush: Paints patterns of pixels

• Paint can: Floods an area with color

• Line: Draws straight lines
Symantec C++ User’s Guide and Reference 7-27

7 Adding Look and Feel with Resources

7-28 Symantec C++ U
• Eye-dropper: Picks up a color from the image

• Rectangles and ovals: Draw outlines or solid shapes

To select a drawing tool, click on the tool in the toolbox. To use a
tool, click or click and drag (as appropriate) with either the left or
the right mouse button. Tools make use of the current line type and
background pattern whenever possible. Using the right mouse
button to click or click and drag reverses the roles of foreground and
background colors.

Zoom and grid
You can work with an image at normal size or zoom by factors of 2,
4, or 8. To zoom, click in the pane containing the image, then
choose which Zoom command you want from the View menu. You
can set one image at normal size for reference and a second image at
a larger size for easier drawing.

To help finish the details of your image, you can display a pixel grid
in the image. A pixel grid can be displayed only when the zoom
factor is 4 or 8. To show a pixel grid, choose Grid from the View
menu.

Closing the bitmap editor
After you are finished with the bitmap, close the Bitmap editor by
choosing Close Editing from the File menu. The Browser window
is updated to show the new resource (Figure 7-27).

Figure 7-27 Browser window, after creating bitmap resource
ser’s Guide and Reference

Using ResourceStudio
Useful ResourceStudio features
You will find a number of ResourceStudio features useful as you
create and edit different resources. These include toolbars, the undo
and redo functions, and the dragging and dropping of items.

Toolbars and pop-up menus
ResourceStudio makes extensive use of toolbars. Toolbar icons offer
quick access to frequently used menu items. For a list of toolbar
commands, see the “ResourceStudio Reference.”

In many parts of ResourceStudio, clicking with the right mouse
button opens a pop-up menu. The contents of the menu depend on
the item clicked and on the current mode or tool. Pop-up menus are
a convenient way to access commands available from the main
menu.

Undo and redo
In ResourceStudio, you can undo any operation you have performed
or redo any operation you have undone. To undo the previous
operation, choose Undo from the Edit menu or click on the Undo
icon in the toolbar. Notice that the operation that will be undone is
noted within the Undo menu item. If instead you want to redo an
action that you have just undone, choose Redo from the Edit menu.

Operations that you have performed are saved in lists. To set the
number of operations that are saved (and thus that can be undone or
redone), choose Preferences from the Shell window’s Edit menu.
Each Browser window and each resource type’s editor keeps its own
undo and redo list.
Symantec C++ User’s Guide and Reference 7-29

7 Adding Look and Feel with Resources

7-30 Symantec C++ U
To view a list of stored operations, click the right mouse button on
the Undo or Redo toolbar icon. You can select one or more
operations from the list (see Figure 7-28).

Clipboard and drag and drop
ResourceStudio supports cut, copy, and paste of resources and of
objects within resources, such as dialog box controls and menu
items.

ResourceStudio also supports drag and drop of all items that can be
cut, copied, and pasted. To move a resource or resource element,
click and drag it to the new location. For example, to move
resources from one file to another, open a Browser window for each
file, then drag the resources from the first file to the second. To copy
rather than move the element, hold down the Control key until you
have released the item.

Managing Resource IDs
Windows programs identify resources by a resource name, which
can be a string or a number. Windows programs also use numbers to
identify commands resulting from menu selections and accelerators
and to identify dialog box controls. The number of identifiers used in
a single application easily can run into the hundreds. One of the
major features of ResourceStudio is its ability to automatically create
and manage resource IDs.

Resource ID field
Many property pages contain an ID field for the current resource or
resource element. There are three types of resource IDs in
ResourceStudio:

Figure 7-28 List of stored operations in Bitmap editor
ser’s Guide and Reference

Managing Resource IDs
• Textual
• Symbolic
• Numeric

Textual IDs
Textual IDs are allowed only for certain resource types. To specify a
textual ID, enclose the text in the ID field in double quotes.
ResourceStudio warns you if you try to assign a textual ID to a
resource type for which it is not allowed.

Symbolic IDs
Symbolic IDs are names that correspond to numbers. By using this
type of ID, you work with names that are meaningful, leaving
ResourceStudio to keep track of the numbers that match the names.
Symbols and their corresponding numbers are saved in the resource
header file as #define statements. Thus the same symbols can be
used to refer to the resources in your application code.

You can assign a symbolic ID either by typing the name into the ID
field or by selecting a pre-existing ID from the drop-down list. If you
enter a new symbol, ResourceStudio automatically assigns a unique
numeric value. If you want to specify the numeric value, follow the
symbolic name with an equal sign and the value (for example,
IDD_TEST=451). You can reassign the value of an existing symbol
in the same way.

Numeric IDs
Numeric IDs should not be used in new resource script (.rc) files;
use symbolic IDs instead. If you create a binary resource file (.res),
or edit the resources in an existing .exe or .dll file, you see the
resource IDs as numbers, because the symbolic information is not
saved for these file types. You can assign a numeric ID by typing the
number into the ID field.

Note
When editing resources in .exe or .dll files,
remember that the compiled source code refers to
resources and commands by the numeric (or
textual) ID; reassigning or changing IDs may result
in incorrect behavior.
Symantec C++ User’s Guide and Reference 7-31

7 Adding Look and Feel with Resources

7-32 Symantec C++ U
Automatic creation of resource IDs
ResourceStudio automatically creates a new resource ID every time
one is needed. The new ID is unique within its context: for resource
elements, the ID is unique within the resource and, for resources,
unique within the resource file.

When assigning values to new symbols typed in by the user or
created automatically, ResourceStudio uses different ranges for
various purposes:

• Resource item range (100-1999): Used for resources
within a resource file

• User range (2000-2999): Used for resource IDs created by
the user from within the Resource ID Browser dialog
box (see below)

• Control range (3000-31999): Used by the Dialog editor
for dialog controls

• Command range (32000-65535): Used by menu and
accelerator editors for menu commands

Resource ID browsing
To browse and modify resource IDs, choose Edit Resource IDs
from the File menu.
ser’s Guide and Reference

Managing Resource IDs
The Resource ID Browser dialog box opens (Figure 7-29).

The upper listbox shows all the symbolic resource IDs in the
resource file. Symbols can be sorted by name, value, or used/unused
state. Click on an ID to show a list of resources using the ID in the
lower listbox. You can open a resource shown in the lower listbox
by double-clicking on it, or by selecting it and clicking View Usage.

The remaining buttons perform the following functions:

• New: Opens the New Resource ID dialog box. Here
you can create a new symbol and assign a value. By
default, the value is in the User range (2000-2999).

• Delete: Deletes the currently selected symbol. A symbol
may only be deleted if it is not in use.

• Change: Opens the Change Resource ID dialog box.
Here you can change the symbol name or value.

• Renumber: Performs a renumbering operation on all
symbolic IDs. Each symbol is examined and a new value
is assigned based on how it is used. If a symbol is used
by items whose values are usually in different ranges, a
dialog box asks you to decide the range in which to
place the value.

Figure 7-29 Resource ID Browser dialog box
Symantec C++ User’s Guide and Reference 7-33

7 Adding Look and Feel with Resources

7-34 Symantec C++ U
ser’s Guide and Reference

Testing an
Application

8

This

deb

chapter provides an overview of building, running, and
ugging an application in Symantec C++. Whenever you finish

making any significant addition or change to the source files of an
application, it is wise to test the result and verify that you have
achieved your goals. To do so, you must first build (or rebuild) the
executable so that it incorporates your modifications. Then you must
observe its behavior—either by tracing through modified sections, or
at least by running the application under the control of the
debugger.

This entire phase of the development cycle can be carried out in the
IDDE. Because all debugging in Symantec C++ takes place within
the IDDE, you do not have to leave the IDDE and run a separate
debugger. The IDDE itself provides a wealth of tools for examining
all facets of your application’s structure and behavior.

Two other chapters present detailed information about the
debugging capabilities of Symantec C++. Chapter 23, “Controlling
and Configuring the Debugger,” describes the commands you use
when debugging, and the options available in the IDDE for
configuring the debugging environment. Chapter 24, “Commands
Available in Debugging Mode,” describes the commands available in
each of the debugging windows.

Debugger Highlights
The integrated debugger:

• Provides a Windows graphical user interface

• Debugs Windows applications under Windows on the
same screen
Symantec C++ User’s Guide and Reference 8-1

8 Testing an Application

8-2 Symantec C++ U
• Debugs DOS applications running in a DOS box under
Windows 3.1

• Takes advantage of virtual memory, letting you debug
large DOS applications under Windows 3.1

• Debugs Win32s applications (in the Win32s IDDE,
scw32s.exe) under Windows 3.1

• Debugs 32-bit Windows and character-mode console
applications (in the Win32 or 32-bit IDDE, scw32.exe)

• Provides a graphical representation of data structures

• Supports high-speed, hardware watchpoints, and
breakpoints

• Lets you drag and drop to execute commands

Choosing an Environment for Debugging
There are three versions of the IDDE included with Symantec C++.
An icon for each version you install is available in your Symantec
C++ program group. These different versions of the IDDE are
essentially identical, except that they allow you to debug different
kinds of executables:

• To debug a Win32 executable under Windows 95 or
Windows NT, use the Win32 IDDE (SCW32.EXE).

• To debug a 16-bit executable, use the 16-bit IDDE
(SCW.EXE).

• To debug Win32s executables under Win32s, use the
Win32s IDDE (SCW32S.EXE).

Building a Project
To test an application, you must first build the executable file, which
is the file you test. Your project specifies the source and library files
needed to build the executable, as well as options that control the
build process. Windows executables also incorporate such resources
as menus, dialog boxes, icons, and bitmaps; these are defined in
resource files. The building process begins by compiling the source
files into object files. Object files are then linked with library files to
create the executable file.
ser’s Guide and Reference

Building a Project
Selecting the project type
You must specify the type of executable you plan to build. You do
so by choosing Settings from the Project menu and clicking on the
Target tab to select the Target page, as shown in Figure 8-1.

On this page, choose the operating system your target executable
will run on, and the target type. Not all target types are available
with all operating system types.

The Target page also presents the option of building a Debug or
Release version of the executable. If you want to debug your
executable, select the Debug option.

For more information on the Target page of the Project Settings
dialog box refer to Chapter 15, “More about Projects and
Workspaces.”

Setting compiler and linker options for debugging
When you indicate that a debugging version should be built, the
IDDE sets the appropriate compiler and linker options, and also
prevents debugging information already in object files from being
discarded.

Figure 8-1 Target page of the Project Settings dialog box
Symantec C++ User’s Guide and Reference 8-3

8 Testing an Application

8-4 Symantec C++ U
To verify that the these settings are appropriate, choose Settings
from the Project menu, and then click on the Build tab to select the
Build page of the Project Settings dialog box. Select the Debug
Information subpage by clicking on that label in the left listbox. The
Debug Information subpage is shown in Figure 8-2.

For more information about project, compiler, and linker options,
see Chapter 15, “More about Projects and Workspaces.”

Building executable files
The IDDE provides three ways to build executable files from your
project: by performing a standard build, by rebuilding the entire
project, or by linking the existing object files.

Performing a standard build
This is the most common of the three build options. To begin,
choose Build from the Project menu. The IDDE recompiles only
those files that changed since you last compiled them, then links the
project. The IDDE displays any errors in the Output window.

The IDDE Make facility is used by default to determine the steps
needed to build your project. It is functionally identical to the DOS
command-line Make utility SMAKE, included with Symantec C++. If

Figure 8-2 Debug Information options
ser’s Guide and Reference

Building a Project
you need to use a different, DOS command-line Make utility, such as
NMAKE or PolyMake, you can do so; see Chapter 16, “More about
Project Build Settings,” for details on how to use an external Make
program.

Rebuilding the project
If you want to recompile every file in your project—even those files
that are up-to-date—choose Rebuild All from the Project menu.
The IDDE recompiles all files in your project, whether they’ve been
edited recently or not, then links the project.

Typical situations in which you use the Rebuild All command
include:

• When you have changed some of the project options
• When you suspect corrupted object .obj files
• When you want to create a final build

Linking the project
If you want to build a program with the existing object files but
without recompiling your source files, choose Link from the Project
menu. The IDDE links the object files.

Typical situations in which you use the Link command include:

• When you have added a new library .lib file
• When you wish to build from object .obj files only
• When you have changed linker options

Other project options
The Build page of the Project Settings dialog box offers additional
settings that you may find useful for precompiling headers and
generating an assembly listing.

Precompiling headers
The Header Files subpage lets you precompile one or all of the
header files that are included by source files in your project.
Precompiling a header is useful when the header file changes
infrequently or not at all between builds, or when a header file is
included by most of the source files in a project. Precompiled
headers speed up the build process, especially with large header
files. For example, windows.h can be beneficially precompiled
because it is large and is not likely to change.
Symantec C++ User’s Guide and Reference 8-5

8 Testing an Application

8-6 Symantec C++ U
Generating an assembly listing
The Assembly Listing (.COD) check box on the Output subpage lets
you create a .cod file that contains the assembly language code into
which the compiler converts your source code. In this file, C++
source statements are preserved as assembly language comments.
Each commented statement precedes the assembly language code to
which it corresponds.

Running a Project
You can run the application that your project produces without
leaving the IDDE. Commands that run your application ask you to
build it if required.

If your program requires no command-line arguments, choose
Execute Program from the Project menu. The IDDE launches your
application.

If your program requires arguments, first choose Arguments from
the Project menu. The IDDE displays the dialog box in Figure 8-3.

Enter your arguments—not the program name—in the dialog box.
For example, entering:

. /s

launches your program with the arguments *.* and /s .

After specifying the arguments, click OK. Then run your application
as described above.

Quick Start: Debugging an Application
This section provides a brief description of how to perform common
debugging tasks. You can find a complete presentation of the
debugging capabilities of Symantec C++ in Chapter 23, “Controlling
and Configuring the Debugger,” and in Chapter 24, “Commands
Available in Debugging Mode.” In Chapter 23, see especially the

Figure 8-3 Run Arguments dialog box
ser’s Guide and Reference

Quick Start: Debugging an Application
sections “Commands on the Debug Menu” and “Debug Toolbox
Icons.”

After building your project, you can enter debugging mode by
choosing Start/Restart Debugging (F4) from the Debug menu.
(That is, you may either choose this command from the menu, or
type its keyboard shortcut given in parentheses.) Alternatively, you
can click on the Restart Debugging icon in the Debug toolbox. Any
open Source windows change to debugging mode. Your application
executes to the breakpoint set automatically on WinMain (for
Windows applications) or main (for DOS applications and 32-bit
console applications).

Other debugging windows, such as the Function window and Data/
Object window, can be opened as needed from the Views toolbox
or from the Goto View submenu of the IDDE’s Window menu.

In debugging mode, the Start/Restart Debugging command on the
Debug menu remains available. This command restarts the program.
The Stop Debugging command on the Debug menu exits
debugging mode, and returns the IDDE to editing mode.

Stepping through code
To step to the next source code statement, choose Step Into (F8)
from the Debug menu. Alternatively, you may click on the Step Into
icon in the Debug toolbox. If the current line is a function call, and
debugging information is available for that function, you will trace
into that function. To step over a function call, choose Step Over
(F10) from the Debug menu, or click on the Step Over icon in the
Debug toolbox.

Note
If you accidentally step into a function call when
you meant to step over it, you can move to where
you intended to be—the statement following the
call—by choosing Return from Call from the
Debug menu. This command executes to the
current function’s return address (unless a
breakpoint or watchpoint is encountered before
control reaches that point).
Symantec C++ User’s Guide and Reference 8-7

8 Testing an Application

8-8 Symantec C++ U
Setting and clearing breakpoints
Setting a breakpoint on a source code statement causes your
program to stop when execution reaches that statement. The
debugger regains control, and you may again perform any
debugging mode actions.

To set a breakpoint on a statement, first click on that statement in the
Source window to make it the selected line. Then choose Set/Clear
Breakpoint (F9) from the Source window pop-up menu (which
appears when you click the right mouse button in the Source
window), or click on the Toggle Breakpoint icon in the Debug
toolbox. These commands act as toggles; repeating them clears the
breakpoint.

The Source window pop-up menu, as it appears in debugging mode,
is shown in Figure 8-4.

A breakpoint symbol in the left margin of the Source window
indicates a breakpoint on the adjacent line. You can also clear a
breakpoint by dragging the symbol out of the Source window.

Executing up to a statement
To execute up to the currently selected line, choose Go Until Line
from the Source window pop-up menu. Double-clicking on any line
in the Source window causes your program to run until execution
reaches that line.

Viewing a list of functions
The Function window lists the functions in the current module or in
all modules. Toggle the display by choosing Current Module or All
Modules from the View menu. Double-click on any function to
view that function in a Source window.

You can easily set a breakpoint at the beginning of a function from
within the Function window by choosing the Set/Clear Breakpoint
(F9) command from the Bpt menu.

Figure 8-4 Source window pop-up menu in debugging mode
ser’s Guide and Reference

Quick Start: Debugging an Application
Examining the values of variables
The Data/Object window lets you view either global data or the
variables local to a function. The Show menu of the Function
window has commands Global Data and Local Data that select the
type of data displayed in the Data/Object window. If you choose
Local Data, the Data/Object window shows the local variables for
the function currently selected in the Function window, provided
that function is in the call chain. (If a function is not in the call chain,
it has no local data.) The display can also be toggled by choosing
Local/Global Data from the View menu of the Data/Object
window.

Examining the call chain
The Call window displays the stack of function calls in your code
that have not yet returned. The list is presented in reverse
chronological order from most to least recent; thus, WinMain (or
main) is at the bottom of the list.
Symantec C++ User’s Guide and Reference 8-9

8 Testing an Application

8-10 Symantec C++ U
The Call window’s Show menu contains commands that let you
zoom in on a particular function in the chain. For example:

• The Source command updates the Source window and
displays the statement that is executing within the
selected function.

• The Data command updates the Data/Object window
and displays local data for the selected function.

Setting watchpoints
A watchpoint specifies that execution of your program should stop
when a particular variable or memory location is written to or read
from. This capability is essential for detecting problems arising from
wild pointers, for example, which can manifest themselves in
extremely elusive and seemingly random behavior.

Symantec C++ debuggers are designed to take advantage of
hardware watchpoints provided by 386 and higher microprocessors.
The Symantec C++ installation program may install the file
SCWDEBUG.386 in the [386Enh] section of system.ini if your
system needs it to allow the use of hardware watchpoints. Because
watchpoints are implemented with hardware assistance, using this
powerful tool imposes no speed penalty on program execution.

Setting a watchpoint on a variable
Using the methods described in the sections above, make sure that
the desired variable is displayed in the Data/Object window. Click
on the line referencing the variable to select it; the line should be
highlighted. Choose Set Watchpoint (Ctrl+W) from the Watch
menu of the Data/Object window. This opens the Set Watchpoint
dialog box, shown in Figure 8-5.

Figure 8-5 Set Watchpoint dialog box
ser’s Guide and Reference

Quick Start: Debugging an Application
The debugger maintains information about the type of variables and
their location in memory. The selected variable’s type determines the
size of the watchpoint. The Set Watchpoint dialog box displays the
address and size of the watchpoint as noneditable fields, and
provides options for breaking on a Read access, Write access, or
both. To clear the watchpoint, choose Clear Watchpoint from the
Watch menu of the Data/Object window.

Warning
Exercise caution when setting a watchpoint on an
automatic variable (that is, a local, nonstatic
variable). If you attempt to set such a watchpoint,
the debugger warns you by displaying a message
on the status line. You should clear the watchpoint
by the time the function whose local variable you
are watching returns. If you don’t, Windows itself
can use the stack location subsequently, thus
triggering the watchpoint and causing Windows to
crash.

In addition to setting watchpoints on variables, watchpoints can also
be set on locations in memory using the Memory window, whose
Watch menu is identical to that of the Data/Object window.

Letting your program run until the next breakpoint
You can make your program run until execution reaches a
breakpoint by choosing Go until Breakpoint (F5) from the IDDE’s
Debug menu, or by clicking on the Go until Breakpoint icon in the
Debug toolbox. You can use the Breakpoint window to see at a
glance where breakpoints have been set.

Letting your program run until it terminates
You can make your program run until it terminates—ignoring any
breakpoints—by choosing Go until End from the Debug menu.

Interrupting execution of the debugged application
Use the Ctrl+Alt+SysRq key combination to break execution of the
application being debugged and return control to the debugger. It
may be necessary to press this key combination a few times before
the debugger regains control. (If you use this key combination to
break execution when control is within Windows itself, it may be
difficult for the debugger to step out of Windows code.)
Symantec C++ User’s Guide and Reference 8-11

8 Testing an Application

8-12 Symantec C++ U
The technique is most useful when you suspect that your own code
is hung. Returning to the debugger lets you examine your program’s
state, which may be one that you thought impossible. Inspecting the
values of variables and the call chain can suggest how to identify
and eliminate the source of the error.

Note
Use Ctrl+Alt+F11 to break execution of Win32s
applications.
ser’s Guide and Reference

	Creating an Application with Symantec C++
	Starting a Project and Defining Workspaces 3
	What Are Projects and Workspaces?
	Starting a Project
	Purpose of a project
	Contents of a project
	Creating a new project
	Naming the project
	Setting the project type
	Adding files to the project
	Setting defines and include directories

	Opening an Existing Project
	Adding and deleting project files
	The Project window
	Closing a project
	Importing a Microsoft or Borland project

	Defining Workspaces
	The purpose of workspaces
	Creating a workspace
	Selecting a workspace
	More options for workspaces

	Generating an Application Framework 4
	What Is an Application Framework?
	Creating a Framework with AppExpress
	Launching AppExpress
	Looking at the AppExpress window
	Specifying an application framework
	Selecting an application type
	Selecting a directory for the project
	Providing copyright information and project option...
	Specifying Class Names
	Naming source Files
	Specifying help file names
	Generating an application framework

	Building on a Framework with ClassExpress
	Launching ClassExpress
	Looking at the ClassExpress window
	Writing a message map with ClassExpress
	Adding a new class to your application

	Defining Classes and Their Hierarchies 5
	Parsing and Browsing
	How the class browsers expand macros
	Browsing library source code

	Class Editor
	Creating classes
	Creating a top-level class
	Creating a derived class
	Creating a sibling class

	Editing inheritance relationships
	Connecting to a base class
	Deleting a connection
	Editing inheritance attributes

	Working with class members
	Adding a class member
	Deleting a class member
	Changing member attributes
	Viewing and editing member source

	Viewing and editing source files

	Hierarchy Editor
	Creating classes
	Creating a top-level class
	Creating a derived class
	Creating a sibling class

	Editing inheritance relationships
	Connecting to a base class
	Deleting a connection
	Changing base class
	Editing inheritance attributes

	Working with class members
	Adding a class member
	Deleting a class member
	Changing member attributes
	Viewing and editing member source

	Viewing and editing source files

	Editing Program Code 6
	Role of the Text Editor
	The Source Window
	Information string
	Modification flag
	Insertion mode
	Read-only flag
	Line number
	Column number

	File Manipulation
	Creating files
	Opening files
	Saving files
	Writing blocks of text to files
	Printing files
	Closing files

	Text Editing
	Typing mode
	Word wrap
	Indentation
	Moving around in a file
	Jumping to a matching delimiter
	Jumping to a specific line
	Jumping to a function
	Jumping to a bookmark

	Selecting text
	Searching and replacing
	Finding a string
	Replacing a string
	Searching through multiple files

	Undoing edits

	Text Editor Options
	Macros

	Compiling Files and Checking Errors

	Adding Look and Feel with Resources 7
	What Are Resources?
	Resource Types
	Bitmaps
	Cursors
	Icons
	Fonts
	Dialog boxes
	Menus
	Accelerators
	Strings
	Version information
	User-defined resources

	Using ResourceStudio
	Starting ResourceStudio
	Creating a new resource file
	Editing a resource file
	Creating a new menu resource
	Adding a pop-up item
	Adding a menu item
	Adding separators
	Editing menus
	Closing the menu editor
	Creating menus with accelerators and item help
	Simple guidelines for creating menus

	Creating a new dialog resource
	Adding a push button
	Adding static text
	Testing the dialog box
	Aligning controls
	Closing the dialog box editor

	Creating a new bitmap resource
	Changing bitmap size
	Selecting colors and patterns
	Drawing tools
	Zoom and grid
	Closing the bitmap editor

	Useful ResourceStudio features
	Toolbars and pop-up menus
	Undo and redo
	Clipboard and drag and drop

	Managing Resource IDs
	Resource ID field
	Textual IDs
	Symbolic IDs
	Numeric IDs

	Automatic creation of resource IDs
	Resource ID browsing

	Testing an Application 8
	Debugger Highlights
	Choosing an Environment for Debugging
	Building a Project
	Selecting the project type
	Setting compiler and linker options for debugging
	Building executable files
	Performing a standard build
	Rebuilding the project
	Linking the project

	Other project options
	Precompiling headers
	Generating an assembly listing

	Running a Project
	Quick Start: Debugging an Application
	Stepping through code
	Setting and clearing breakpoints
	Executing up to a statement
	Viewing a list of functions
	Examining the values of variables
	Examining the call chain
	Setting watchpoints
	Setting a watchpoint on a variable

	Letting your program run until the next breakpoint...
	Letting your program run until it terminates
	Interrupting execution of the debugged application...

