
Symantec C++
Learning Symantec
C++ by Example

Part Three

9 Introduction to the
Tutorial

10 Lesson 1: Create the
DOS Application

11 Lesson 2: Generate an
Application Framework

12 Lesson 3: Customize the
Interface

13 Lesson 4: Add Messages
with ClassExpress

14 Lesson 5: Add a Dialog
with ClassExpress

Symantec C++ Use
r’s Guide and Reference

Introduction to
the Tutorial

9

Welco

con

me to Symantec C++ version 7. This section of the manual
tains a tutorial designed to introduce you to the important

components and features of the Integrated Development and
Debugging Environment (IDDE)—the “shell” within which most of
your application development takes place.

The tutorial is designed to complement Part Two, “Creating an
Application with Symantec C++.” The tutorial provides a quick tour
of the IDDE that shows you how to perform the most common tasks.
Part Two contains more in-depth information, to show you
procedures for less common tasks and alternative ways of
accomplishing things.

Prerequisite Knowledge
This tutorial assumes that you are familiar with the Windows
environment—that you can start applications from the Program
Manager, move and resize windows, operate menus and dialog
boxes, and perform simple text editing tasks (such as cut, copy, and
paste). The tutorial also assumes some familiarity with C, C++, and
Windows programming basics. You need not know anything about
the Microsoft Foundation Class (MFC) library; MFC basics are
introduced here.

For more information, consult the references listed in Chapter 1,
“Introducing Symantec C++.”

The Tutorial Application
The application built in the tutorial lets you read and navigate
through hypertext. Two versions are built: a DOS version (in Lesson
1) and a Windows 3.1 version (in Lessons 2-5). Most of the code for
the application has been written; the tutorial just shows you certain
stages in the development process to familiarize you with IDDE
tools.
Symantec C++ User’s Guide and Reference 9-1

9 Introduction to the Tutorial

9-2 Symantec C++ U
The hypertext files that the tutorial applications accept as input are
text files containing simple commands that control document
formatting and show images as well as commands that define links
to other such documents. The markup language recognized by the
tutorial applications, referred to throughout the tutorials as TML, is a
subset of the Hypertext Markup Language (HTML). HTML is a format
that has become a standard for information interchange on the
World-Wide Web (WWW), a distributed hypermedia system
accessible through Internet connections.

Special WWW browser programs enable users worldwide to access
and share text, graphics, audio, and other data. The tutorial
applications only hint at the richness of full-featured WWW
browsers. The DOS TML Reader built in Lesson 1 is called TMLDOS;
the Windows version of Lessons 2 through 5 is called TMLRead.

Tutorial Structure
The tutorial comprises five lessons that include instructions for
performing various tasks. Following these instructions will teach you
basic procedures and familiarize you with IDDE tools. Each lesson
builds on concepts and procedures introduced in previous lessons,
so it is best to work through the lessons in order.

Lesson 1 teaches you the basics: how to start the IDDE, open Source
windows for editing text, and compile and run a program. In
addition, the first lesson shows you how to run in debugging mode
and perform fundamental debugging tasks. The example program in
Lesson 1 is a DOS application; however, the skills you learn are
equally applicable to Windows application development.

Lesson 2 shows you how to use AppExpress to generate an
application framework for a Windows program. You also learn to
use precompiled headers and to use TRACE calls within your
program to track its progress. Lesson 2 concludes with a brief
introduction to MFC and describes the classes that constitute the
application framework you generated.

Lesson 3 teaches you how to use the ResourceStudio. You modify
the menu and accelerator table generated by AppExpress, and attach
a new toolbar bitmap to your application’s resources. You then edit
the source code to make use of the new toolbar.

Lesson 4 shows you how to use ClassExpress to add message
handlers to your application. You add handlers for Windows
ser’s Guide and Reference

Tutorial Source Code
messages, such as scrolling, mouse button clicks, and keypresses,
then monitor the message handlers as the application framework
calls them.

Lesson 5 returns to the ResourceStudio, with which you add a menu
item to open a simple Preferences dialog box. You use
ClassExpress to create a new class for the dialog box and add
message handlers. Finally, you add code to connect the menu item
to the dialog box and to exchange information between the dialog
box and the main program.

Tutorial Source Code
The source code for the tutorial is located in samples\tutorial ,
under the directory in which you installed Symantec C++ (by default,
this is c:\sc\samples\tutorial). The samples\tutorial
directory contains a subdirectory corresponding to each lesson
(these subdirectories are named lesson1 , lesson2 , lesson3 ,
lesson4 , and lesson5).

Each lesson’s subdirectory (except lesson2) contains three
subdirectories, named start , finish , and backup .

• The start subdirectory is your working directory
during the tutorial; it contains the project and source
code that you change as part of the lesson.

• The finish subdirectory contains the project as it
should appear after the steps in the lesson are performed
correctly.

• The backup subdirectory is a copy of the initial contents
of the start subdirectory. If you want to redo the
lesson from scratch, delete the contents of the start
subdirectory and copy all the files in the backup
subdirectory to the start subdirectory.

The subdirectory for Lesson 2 contains only a finish subdirectory.
The start subdirectory is created as part of the lesson.

The source and executable of the final DOS version of the TML
Reader is contained in tutorial\tmldos . The source and
executable of the final Windows version is located in
tutorial\tmlread .
Symantec C++ User’s Guide and Reference 9-3

9 Introduction to the Tutorial

9-4 Symantec C++ U
ser’s Guide and Reference

Lesson 1: Create the
DOS Application

10

In th

Dev

is chapter you learn basic procedures for using the Integrated
elopment and Debugging Environment (IDDE) while building a

DOS version of the TML Reader. This lesson teaches you to:

• Start the IDDE and load a project
• Edit source code
• Build and run the application
• Create a debugging workspace
• Run the application in debugging mode

Most of the code for the application has already been written; during
the lesson you will add a few final lines. At the end of the lesson,
you will have a DOS executable that can read and display TML files.

Starting the IDDE and Loading a Project
To start the IDDE:

First, start the IDDE. If you haven’t yet installed Symantec C++,
please see the Getting Started Guide for installation instructions.

1. Double-click on the Symantec C++ 16-bit group icon in
the Windows Program Manager. (If the Symantec C++
16-bit group is already open, you may omit this step.)

2. Double-click on the Symantec C++ icon. The IDDE main
window opens at the top of the screen (see Figure 10-1).

Figure 10-1 The IDDE main window and Workspace toolbox
Symantec C++ User’s Guide and Reference 10-1

10 Lesson 1: Create the DOS Application

10-2 Symantec C++ U
The IDDE main window contains a title bar and a menu bar. Below
the main window is the Workspace toolbox, used to switch between
workspaces (described later in this chapter). The Workspace toolbox
is currently docked under the IDDE menu bars. Additional IDDE
windows open below the main window and Workspace toolbox.
You can open other IDDE windows by selecting their names from
the Goto View submenu of the Window menu; close any window
by clicking the Close button in its upper-left corner.

Next, you must load the DOS TML Reader project. (A project is a
collection of source and other support files from which an
executable is generated.) To open the project:

1. Choose Open from the IDDE’s Project menu.

2. Use the Open Project dialog box to find
samples\tutorial\lesson1\start\tmldos.prj,
located under the directory in which you installed
Symantec C++.

3. Click OK.

You can view the project’s source file list in the Project window. If
the Project window is not already open, choose Project from the
Goto View submenu of the Window menu.

In the next section you edit one of the source files.

Editing Source Code
The DOS TML Reader’s source code needs a minor addition before
compilation. To add the missing lines, you must edit the source code
in a Source window.

1. In the Project window, double-click on display.c .
ser’s Guide and Reference

Editing Source Code
A Source window opens, showing the contents of the
source file (see Figure 10-2).

2. Choose Function from the Source window’s Goto
menu. The Goto Function dialog box opens.

3. Select Display from the Function Name listbox, then
click OK. The editor moves to the start of Display() .

4. Choose Find from the Edit menu. The Find dialog box
opens.

5. In the Pattern textbox, type LESSON 1 .

6. Click on Next.

7. You should see the following line in the source code:

/* INSERT CODE FOR LESSON 1 HERE! */

Just after this comment, but before the procedure’s
closing brace, insert the following two lines of code:

disp_move(disp_numrows-1, 0);
disp_eeol();

8. Choose Save from the File menu.

The DOS TML Reader is now ready to be compiled.

In the next section you learn to build and run the project, and you
look at a sample document.

Figure 10-2 Source window
Symantec C++ User’s Guide and Reference 10-3

10 Lesson 1: Create the DOS Application

10-4 Symantec C++ U
Building and Running the Application
To build and run the DOS TML Reader:

1. From the IDDE’s Project menu, choose Rebuild All.

The Output window opens automatically. This window informs you
of build progress and displays any warning or error messages. If no
errors exist, you see the message “Successful build.” (You can still
work in the IDDE while the build is in progress, because the process
of building is multitasked. The Output window can be behind other
IDDE windows, even when messages are being written to it.)

2. From the IDDE’s Project menu, choose Arguments.
The Run Arguments dialog box opens.

3. Type sample.tml into the textbox and click OK.

4. From the Project menu, choose Execute Program.

The TML Reader opens in full-screen mode, showing the formatted
contents of sample.tml (see Figure 10-3). You can use Page Up,
Page Down, and the arrow keys to scroll through the file. To execute
a hyperlink, position the cursor over text shown in reverse video and
press Enter. Press Escape to exit the program and return to the IDDE.

The DOS TML Reader is believed to be without any significant bugs.
However, most applications have bugs during at least some of their
development phase. To help you locate and correct incorrect code
as quickly as possible, the IDDE has powerful debugging features.

Figure 10-3 The DOS TML Reader
ser’s Guide and Reference

Setting Up a Workspace for Debugging
The following sections show you how to set up a workspace for
debugging and debug your source code.

Setting Up a Workspace for Debugging
A workspace is an arrangement of windows on the screen. You can
set up several useful configurations of IDDE windows, then switch
between them by clicking on workspace names in the Workspace
toolbox.

The IDDE predefines a workspace named Debugging, which
contains a configuration of windows useful for typical debugging
sessions. Here, however, we define a new workspace specific to this
lesson, to show you how this is done and to avoid disturbing any
customizations you may have already made to the Debugging
workspace.

To create a workspace for debugging:

1. Choose New from the Workspace submenu of the
IDDE’s Environment menu.

2. When prompted for a workspace name, type Lesson1 .

3. Click OK.

The IDDE creates a new workspace and adds the workspace name
to the Workspace toolbox. Initially the new workspace is empty,
with the exception of a few toolboxes that are not needed here. To
close the toolboxes, click the Close buttons in the upper-left corners.

Next, you need to add windows to the workspace. During
debugging, the Source window follows program execution, the
Function window views a list of functions in a particular program
module, the Data/Object window views program data, and the Call
window displays the program call chain.

1. To open the Project window, press Ctrl+Shift+P.

2. In the Project window, double-click on main.c . A
Source window opens.

3. To open the Function window, press Ctrl+Shift+F.

4. To open the Data/Object window, press Ctrl+Shift+D.
Symantec C++ User’s Guide and Reference 10-5

10 Lesson 1: Create the DOS Application

10-6 Symantec C++ U
5. To open the Call window, press Ctrl+Shift+L.

Other debugging windows are available as well; see Chapter 24,
“Commands Available in Debugging Mode,” for more information.

Arrange the windows the way you want them (one example is
shown in Figure 10-4), then choose Save Workspace Set from the
Workspace submenu of the IDDE’s Environment menu.

Now that the workspace is ready, you can begin debugging. The
following section shows you how to run the application in
debugging mode and how to set a breakpoint on a function, how to
view program data, and how to step through code.

Running in Debugging Mode
To execute the application in debugging mode, click in the Source
window, then choose Start/Restart Debugging from the IDDE’s
Debug menu. Several things happen:

1. The IDDE opens a window (the Symantec Application
Window), in which the application runs. This window
may be behind other windows.

Figure 10-4 A possible Lesson 1 workspace
ser’s Guide and Reference

Running in Debugging Mode
2. The application is executed to the start of main .

3. The Source window changes to debugging mode (see
Figure 10-5). Arrows indicating execution points within
functions, and flags indicating breakpoints are shown in
the left margin. You cannot edit the code while in
debugging mode.

4. The Project window changes to debugging mode (see
Figure 10-6). The icons next to the source module names
change to indicate their status:

• A bug symbol indicates that the module contains
debugging information.

• A small “T” indicates that tracing is enabled in the
module.

• A green dot indicates that a breakpoint is set and
enabled in the module.

5. The Function window is updated to show a list of
functions in the program (see Figure 10-6). An arrow

Figure 10-5 Source window in debugging mode

Figure 10-6 Project window in debugging mode
Symantec C++ User’s Guide and Reference 10-7

10 Lesson 1: Create the DOS Application

10-8 Symantec C++ U
next to main indicates that it is in the call chain; a
diamond indicates that a breakpoint is set.

6. The Call window is updated to show the call chain and
execution status (see Figure 10-8).

You can now perform the following simple debugging tasks.

Setting and running to breakpoints
To set a breakpoint on a function and execute to it:

1. Click and drag display.c from the Project window to
the Source window.

2. Choose Set/Clear Breakpoint from the Bpt menu. A
breakpoint is set at the start of ShowScreen .

3. Choose Go Until Breakpoint from the IDDE’s Debug
menu. The program is executed to the start of
ShowScreen .

Figure 10-7 Function window

Figure 10-8 Call window
ser’s Guide and Reference

Running in Debugging Mode
The Source window shows the line at which execution stopped. The
Call window shows functions in the call chain (see Figure 10-9).

Viewing data
You can view program data using the following commands:

1. Choose Data from the Show submenu of the Source
window’s pop-up menu. The Data/Object window is
updated to show the local data in ShowScreen (see
Figure 10-10).

2. In the Call window, click on main , then choose Data
from the Show menu. The Data/Object window is
updated to show the local data in main .

3. Choose Local/Global Data from the Data/Object
window’s View menu. The Data/Object window is
updated to display global data accessible in the current
module. Choose Local/Global Data again to resume
display of local data.

Stepping through code
To step through the source code line-by-line:

1. Choose Step Into from the IDDE’s Debug menu (or
press F8) seven times. The IDDE executes seven lines of
code. The seventh step takes execution into ShowLine ;

Figure 10-9 Call chain to function ShowScreen

Figure 10-10 Data/Object window showing local data
Symantec C++ User’s Guide and Reference 10-9

10 Lesson 1: Create the DOS Application

10-10 Symantec C++ U
at that point the Call window adds ShowLine to the call
chain, and the Data/Object window is updated to display
the function’s local data.

2. Choose Return from Call from the IDDE’s Debug menu
to execute the rest of ShowLine and return to the
calling function.

3. Choose Step Over from the IDDE’s Debug menu (or
press F10) several times. The IDDE executes some lines
of code in the function, but it does not step into
subroutines. ShowScreen is in a loop that writes lines
to the screen one-by-one. The results appear in the
Symantec Application Window.

Running to the end
To execute the rest of the program, ignoring breakpoints, choose Go
Until End from the IDDE’s Debug menu. Bring the Symantec
Application Window to the front and test the program as usual. You
can press Alt+Ctrl+SysRq to break to the debugger, or let the
program terminate before resuming your debugging session. (In the
DOS TML Reader, you must press Escape to end the program.)

Ending the debugging session
To exit debugging mode, choose Stop Debugging from the IDDE’s
Debug menu. You can do this at any time during debugging; you
don’t have to choose Go Until End first.

In this chapter you have learned how to start the IDDE, load a
project, edit source code, build and run the application, and run in
debugging mode. These are the fundamental tasks you perform
repeatedly as you develop your own applications, whether you are
developing in C or C++, for DOS or for Windows. In the following
lessons, you learn about the IDDE’s more advanced features, many
of which are designed specifically for Windows application
development in C++.
ser’s Guide and Reference

Lesson 2: Generate an
Application Framework

11

In th

of t

is chapter you begin the process of building a Windows version
he TML Reader. This version is built around a Microsoft

Foundation Class (MFC) version 2.5 Single Document Interface (SDI)
framework. In this lesson you:

• Use AppExpress to generate a new project containing the
SDI framework

• Build and run the bare application framework, a
standardized skeleton composed of C++ classes derived
from MFC library base classes.

• Use precompiled headers to speed build time

• Add calls to the TRACE macro with Class Editor

• Follow TRACE output in the Trace Messages window

At the end of the lesson you will have a working application
framework with menus, a toolbar, and a status bar. The framework
itself will respond to certain commands, but the functionality needed
to read and display TML files is not yet included. In subsequent
chapters you modify the user interface for the TML Reader and add
the necessary file input and display routines.

There are many ways to create an application framework. This
lesson provides the most straightforward way.

Generating the Framework
In this lesson you use AppExpress to generate a new project
containing an application framework. To start AppExpress:

1. Start the IDDE and close any open project by choosing
Close from the Project menu.
Symantec C++ User’s Guide and Reference 11-1

11 Lesson 2: Generate an Application Framework

11-2 Symantec C++ U
2. Start AppExpress by choosing AppExpress from the
Tools menu.

The AppExpress window opens (shown in Figure 11-1).

AppExpress contains six pages of options that together define the
project to be generated. You define these options in six steps, listed
in the upper-left portion of the window. For this project, you need to
change options on only four of the six pages. Set up the project
options as follows:

1. On the Application Type page (shown when AppExpress
is started), select SDI.

2. Deselect Include Help to suppress generation of
Windows Help support.

3. Click on Next to switch to the Select Directory page.
Change to the samples\tutorial\lesson2
directory under the directory in which you installed
Symantec C++, then click on Create New Directory.

4. Type start in the textbox and click Create.

Figure 11-1 Setting up an SDI application with AppExpress
ser’s Guide and Reference

Building and Running the New Project
Note
To avoid filename conflicts, it is a good idea to keep
each project you create in a separate directory.

5. Click on Next to switch to the Miscellaneous page. Type
your company name and suffix (or your own name) in
the appropriate textboxes. This information is displayed
in the automatically generated About dialog box, and in
comments at the beginning of each source file.

6. In the Project Name textbox, type TMLRead.

7. Click on Next to switch to the Names page. You can
customize the names of automatically generated classes
here. From the Name drop-down list, select
CTMLReadApp. In the Edit textbox, type CTMLReadApp.

8. Click Finish.

AppExpress generates a new project in the directory you created.
The directory contains:

• Source and header files for the MFC-derived classes
• Resource script and binary files
• Project options and other support files

After generating the project, AppExpress closes and control returns
to the IDDE. The new project is loaded automatically. The IDDE
parses the new project’s source files for browsing with the Class and
Hierarchy Editors; parsing progress is displayed in the Output
window.

Building and Running the New Project
Next you build the project and learn what the default application
framework can do.

1. From the IDDE’s Project menu, choose Rebuild All.

2. From the Project menu, choose Execute Program.
Symantec C++ User’s Guide and Reference 11-3

11 Lesson 2: Generate an Application Framework

11-4 Symantec C++ U
The IDDE minimizes itself and the TMLRead application opens
(shown in Figure 11-2).

At present, default functionality for several menu commands is
provided by the MFC base classes. For example, if you choose Open
from the File menu, a standard Windows File Open dialog box
opens. You can select a file in this dialog box, but the code needed
to read data from the file is not yet installed.

To close TMLRead and return to the IDDE, choose Exit from the
File menu.

The project can take a considerable amount of time to compile. Next
you learn how to decrease compilation time by using precompiled
headers.

Using Precompiled Headers
In the last section, over 70,000 lines of code were read during
compilation. Many of these lines are in Windows and MFC header
files that are changed infrequently (if ever), but still must be included
by almost every source file. To speed compilation, you can
precompile header files; thereafter, the symbols generated by the
compiler can be loaded directly.

To precompile the Windows and MFC header files:

1. Choose Settings from the Project menu. The Project
Settings dialog box opens.

Figure 11-2 New application framework generated by AppExpress
ser’s Guide and Reference

Using Precompiled Headers
2. Click on the Build tab.

3. In the left listbox, click on Header Files.

4. In the Precompile section of the right pane, select
Specific Header.

5. In the textbox below the Specific Header selection, type
stdafx.h .

Note
You can specify multiple specific headers to
precompile by entering in this textbox a list of their
names separated by semicolons or spaces.

6. Click OK.

7. An Editor/Browser message box is opens, noting that
project settings have changed and asking if you want to
reparse all files. Click No, because you are about to build
in the next step, which will stop any parse in progress.

8. From the IDDE Project menu, choose Rebuild All.

Figure 11-3 Using precompiled headers
Symantec C++ User’s Guide and Reference 11-5

11 Lesson 2: Generate an Application Framework

11-6 Symantec C++ U
During the rebuild, the header file stdafx.h is precompiled, then
the source files are compiled using the precompiled symbol table.
You should notice a significant reduction in the number of lines
compiled, as well as a corresponding increase in compile speed.

Now that you have created, compiled, and executed the application
framework, the rest of the chapter helps you to understand the
framework’s structure. The following three sections are optional.

Adding TRACE Calls with Class Editor
In the remainder of this chapter, you investigate calls to member
functions of the MFC-derived classes created by AppExpress to
understand the structure of the application framework and the
relationships between the classes. To do this, you use the Class
Editor to insert calls to the MFC global TRACE macro into the
member functions, then watch the output in the Trace Messages
window.

To add a TRACE call to the application class’s constructor:

1. Choose Class Editor from the Goto View submenu of
the IDDE Window menu. The Class Editor window
opens (see Figure 11-4).

2. Under Classes, click on CTMLReadApp. The application
class’s members appear in the Members list.

3. Under Members, double-click on CTMLReadApp. The
application class constructor’s source code is shown in
the source pane.

4. Add the following line to the constructor:

TRACE(“CTMLReadApp::CTMLReadApp()\n”);

The constructor should now appear as follows:

//
// CTMLReadApp construction

CTMLReadApp::CTMLReadApp()
{

TRACE("CTMLReadApp::CTMLReadApp()\n");
// TODO: add construction code here,
// Place all significant initialization in InitInstance

}

ser’s Guide and Reference

Adding TRACE Calls with Class Editor
5. Press Ctrl+S to save the modified constructor.

You can add similar TRACE calls to these other member functions:

• CTMLReadApp::InitInstance()
• CMainFrame::CMainFrame()
• CMainFrame::~CMainFrame()
• CMainFrame::OnCreate()
• CTMLReadDoc::CTMLReadDoc()
• CTMLReadDoc::~CTMLReadDoc()
• CTMLReadDoc::OnNewDocument()
• CTMLReadDoc::Serialize()
• CTMLReadView::CTMLReadView()
• CTMLReadView::~CTMLReadView()
• CTMLReadView::OnDraw()

When you have finished, choose Build from the IDDE Project
menu to recompile the source files you have changed.

In the next section you execute the application and watch the
TRACE output in the Trace Messages window.

Figure 11-4 Adding TRACE calls with Class Editor
Symantec C++ User’s Guide and Reference 11-7

11 Lesson 2: Generate an Application Framework

11-8 Symantec C++ U
Watching TRACE Output in the Trace Messages
Window
To watch TRACE output, first you must set up the Trace Messages
window to receive and display TRACE messages.

1. Choose Trace Messages from the Goto View submenu
of the IDDE’s Window menu. The Trace Messages
window opens.

2. Choose Output to Window from the Options menu of
the Trace Messages window.

3. Choose MFC Debug Messages from the Options menu.
The MFC Trace Debug Options dialog box opens.

4. Check Enable Tracing and uncheck any other options
that are checked. Click OK.

You are now prepared to run the application and view the output of
the TRACE macro calls.

1. Choose Execute Program from the IDDE’s Project
menu.

2. The IDDE is minimized and the application window
opens. Double-click on the IDDE icon to reopen the
IDDE windows. Position the windows so you can watch
the Trace Messages window while the program executes.

The Trace Messages window has already received several messages
from the application’s class constructors and initialization code
(Figure 11-5). You see more messages if you choose Open or New
from TMLRead’s File menu, or when the window needs to be
repainted.
ser’s Guide and Reference

The Application Framework and MFC Classes
When you close TMLRead, the Trace Messages window receives
messages from the application’s class destructors.

The next section gives an overview of the classes in the application
framework and explains the messages you see in the Trace Messages
window.

The Application Framework and MFC Classes
In this chapter, you have used AppExpress to build an application
framework, a skeleton on which you can build a Windows
application, consisting of C++ classes contained in and derived from
classes in the Microsoft Foundation Class (MFC) library.

The MFC library is a C++ class library that supports programming for
Windows. It encapsulates most of the Windows Application
Programming Interface (API), and provides additional C++
programming support such as container and string classes. The MFC
library makes it easy to work with Windows elements in an object-
oriented manner. For example, MFC library classes exist to represent
objects such as windows, dialog boxes, controls, device contexts,
Graphic Device Interface (GDI) objects, and so on. Windows API
functions are implemented as member functions of the classes with
which they are logically associated.

TMLRead is built on a Single Document Interface (SDI) framework.
The SDI framework contains five fundamental objects:

• Document: The document contains data, reads the data
from disk, and provides access to the data. In TMLRead,
the document is an object of type CTMLReadDoc,
derived from the MFC library class CDocument.

Figure 11-5 TRACE output in the Trace Messages window
Symantec C++ User’s Guide and Reference 11-9

11 Lesson 2: Generate an Application Framework

11-10 Symantec C++ U
• View: The view displays the data contained by the
document. In TMLRead, the view is an object of type
CTMLReadView, derived from the MFC library class
CView (which is, in turn, derived from CWnd, the base
class for all types of windows).

• Document Template: The document template defines the
association between document and view classes. In an
SDI application, this is an object of type
CSingleDocTemplate.

• Frame Window: The frame window object is the
application’s main window. In TMLRead it contains a
toolbar, a status bar, and the view. The frame window is
an object of type CMainFrame, derived from the MFC
library class CFrameWnd.

• Application: The application object creates and controls
the other objects, and takes care of general program
initialization and cleanup. In TMLRead the application is
an object of type CTMLReadApp, derived from the MFC
library class CApplication.

The framework itself provides standard user-interface
implementations for some commands (for example, file open and
save); you must add support for certain framework functions (such
as file input and output), as well as add other command and
message-handling capability specific to your application.

The TRACE output from the previous section lets you see the
creation, use, and destruction of objects in the application. For
example, when you start the application, you see the following
messages:

[00001] NOTIFY(StartTask)
[00002] CTMLReadApp::CTMLReadApp()
[00003] CTMLReadApp::InitInstance()
[00004] CTMLReadDoc::CTMLReadDoc()
[00005] CMainFrame::CMainFrame()
[00006] CMainFrame::OnCreate()
[00007] CTMLReadView::CTMLReadView()
[00008] CTMLReadDoc::OnNewDocument()
[00009] CTMLReadView::OnDraw()
ser’s Guide and Reference

The Application Framework and MFC Classes
The application object is created first. Using a document template,
the application object creates the document, frame window, and
view objects. It then calls the document object to set up a new
document. Finally, when the window is shown, the framework calls
the view’s OnDraw() function to repaint the window.

If you choose New from TMLRead’s File menu, you see the
following messages:

[00010] CTMLReadDoc::OnNewDocument()
[00011] CTMLReadView::OnDraw()

Or, if you choose Open from the File menu, then select a file, you
see:

[00012] CTMLReadDoc::Serialize()
[00013] CTMLReadView::OnDraw()

The document object is called either to create a new document or to
read a document from a file, depending on the menu item that was
chosen. Note that neither the document object nor the view object is
destroyed; in an SDI application, they are reused continually.

When you choose Exit from TMLRead’s File menu, the application’s
objects are destroyed in reverse order in which they were created.
You see these messages in the Trace Messages window:

[00014] CTMLReadView::~CTMLReadView()
[00015] CMainFrame::~CMainFrame()
[00016] CTMLReadDoc::~CTMLReadDoc()
[00017] NOTIFY(ExitTask)
[00018] NOTIFY(DelModule)

There is no message from the application object’s destructor,
because it is not defined explicitly in the framework.

You may find it useful to continue to add TRACE calls to the
application as it is built. It is often difficult to follow the workings of
a message-driven system; the Trace Messages window, however, acts
as a kind of passive debugger that keeps you informed of the
internal workings of your application.

In the next chapter, you begin to shape the application framework to
the specific needs of the application. The first step in this process is
to customize the user interface with the Resource Editor.
Symantec C++ User’s Guide and Reference 11-11

11 Lesson 2: Generate an Application Framework

11-12 Symantec C++ U
ser’s Guide and Reference

Lesson 3: Customize
the Interface

12

A fter

it is

 an application framework has been generated with AppExpress,
 usually necessary to customize the user interface. This typically

is an ongoing process; as your application evolves, you can add and
remove interface elements. In this lesson you perform the initial
stage of customization. You will:

• Use ResourceStudio to customize TMLRead’s menu and
toolbar

• Edit the code that sets up the toolbar

AppExpress generates an SDI application framework with a full set
of resources. TMLRead needs only a subset of the standard user
interface, so most of the work in this lesson involves trimming down
the interface. At the end of the lesson you will have a modified
version of TMLRead, supporting only the commands that are needed.

Before starting this lesson, start the IDDE and open the project
tmlread.prj found in directory
samples\tutorial\lesson3\start .

Launching ResourceStudio
An application’s resources are contained in a resource script file,
which includes descriptions of menus, dialog boxes, and other user
interface elements. The resource script file is edited with
ResourceStudio. To launch ResourceStudio:

1. Open the Project window by pressing Ctrl+Shift+P.

2. In the Project window, double-click on tmlread.rc .
Symantec C++ User’s Guide and Reference 12-1

12 Lesson 3: Customize the Interface

12-2 Symantec C++ U
3. When asked if you want to use ResourceStudio to edit
this file, click Yes. ResourceStudio starts, with its Shell
window minimized. (The Shell window is a control
center from which you can create and open resource
files. You will use it later in this lesson.)

The Browser window of ResourceStudio opens (Figure 12-1).
The window controls editing of the resources within an individual
resource file. On startup, its upper-left pane contains a list of
resource types found in tmlread.rc .

The TML Reader is only able to read and display TML files; it cannot
edit or write them. Thus, you can remove menu items related to
editing and saving.

Customizing the Menu
In this section you customize TMLRead’s menu.

Within ResourceStudio are several individual editors, each capable of
editing a single type of resource. For example, the Dialog editor is
used to edit dialog box resources, and the Menu editor to edit menu
resources. By default, the editors use the right pane of the Browser
window.

To start the Menu editor:

1. Click on Menu in the Browser window’s upper-left pane.
2. Double-click on IDR_MAINFRAME in the lower-left pane.

Figure 12-1 The Browser window of ResourceStudio
ser’s Guide and Reference

Customizing the Menu
The Menu editor opens in the Browser window (Figure 12-2). Its
menu replaces the Browser window’s menu, and its toolbar appears
at the top of the right pane.

As the Menu editor opens, the Property Sheet also opens (Figure
12-2). This window is used to edit resource and resource element
properties and options.

The Test Menu pop-up window also opens simultaneously with the
Menu editor (Figure 12-2). It is a top-level window whose menu is
identical to the one you are editing. This window does nothing
when you choose menu items that are not top-level menu items or
submenus.

Figure 12-2 The Menu editor in the Browser window

Figure 12-3 The Property Sheet
Symantec C++ User’s Guide and Reference 12-3

12 Lesson 3: Customize the Interface

12-4 Symantec C++ U
Because changes you make to the menu in the Browser window are
immediately reflected in the menu of the Test Menu window, you
can verify your changes as you make them.

Now you can remove unnecessary menus and menu items.

1. Click on “MENUITEM New” to select this menu item.
2. Press Delete.
3. Repeat the above steps to delete:

• “MENUITEM Save”
• “MENUITEM Save As”
• “POPUP Edit”
• “MENUITEM Index”
• “MENUITEM Using Help” and the following

“SEPARATOR”

If you make a mistake, you can correct it by choosing Undo from
the Edit menu.

To close the Menu editor, choose Close Editing from the File menu,
or press Escape. The Browser window menu and toolbar return. The
right pane shows a preview of the menu.

Although we have removed menu items for commands that will not
be supported, at present it would still be possible to access some of
those commands through their accelerators. In the next section we
remove those commands from the accelerator table.

Customizing the Accelerator Table
To start the Accelerator Table editor:

1. Click on Accelerator in the Browser window’s upper-left
pane.

2. Double-click on IDR_MAINFRAME in the lower-left pane.

Figure 12-4 The Test Menu window
ser’s Guide and Reference

Customizing the Accelerator Table
The Accelerator Table editor opens in the Browser window (shown
in Figure 12-5). As with the Menu editor, the Accelerator Table
editor’s menu replaces the Browser window’s menu, and its toolbar
appears at the top of the right pane.

Removing accelerators is quite similar to removing menu items. To
remove the unnecessary accelerators:

1. Click on ID_FILE_NEW.
2. Press Delete.
3. Repeat the above steps for all the accelerators, leaving

only ID_FILE_OPEN and ID_FILE_PRINT.

As in the Menu editor and elsewhere in ResourceStudio, if you make
a mistake, you can correct it by choosing Undo from the Edit menu.

To close the Accelerator Table editor, press Escape.

Commands may be sent to TMLRead in one other way: by clicking
on buttons in the toolbar. In the next section we replace the toolbar
bitmap with one containing only commands that are supported by
TMLRead.

Figure 12-5 The Accelerator Table editor in the Browser window
Symantec C++ User’s Guide and Reference 12-5

12 Lesson 3: Customize the Interface

12-6 Symantec C++ U
Importing a New Toolbar Bitmap
Before importing a new toolbar bitmap, delete the current toolbar
bitmap:

1. Click on Bitmap in the Browser window’s upper-left
pane.

2. Click on IDR_MAINFRAME in the lower left-pane.

3. Press Shift+Delete.

You must now copy a bitmap from another resource script file. To
do this, you open a second Browser window to view the contents of
a resource script file containing the new toolbar bitmap. Then you
copy the bitmap to the clipboard and paste it into tmlread.rc .

1. Double-click the ResourceStudio icon to restore the Shell
window.

2. In the Shell window, choose Open from the File menu.

3. Select the file newbar.rc and click OK.

4. In the upper-left pane of the new Browser window, click
on Bitmap.

5. In the lower-left pane, click on IDB_NEWBAR. A
preview of the bitmap appears in the right pane
(Figure 12-6).

6. Choose Copy from the Edit menu. The bitmap is copied
to the clipboard.

7. Choose Close from the File menu. The second Browser
window closes. Activate the Browser window containing
tmlread.rc by clicking on it.

8. Choose Paste from the Edit menu. The bitmap is added
to your application’s resources.

Figure 12-6 New toolbar bitmap
ser’s Guide and Reference

Exiting ResourceStudio
The new toolbar does not presently have the correct resource ID.
For the application framework to use it correctly, this toolbar’s
resource ID must be identical to that of the application’s menu and
accelerator table resources. To set the new bitmap’s resource ID:

1. Click on the Property Sheet to bring it to the front. The
Property Sheet shows the resource ID and memory
options for the bitmap resource.

2. From the ID drop-down list, select IDR_MAINFRAME.

The initial resource customization is now complete. Next you exit
ResourceStudio and make a minor adjustment to update the source
code that loads the toolbar.

Exiting ResourceStudio
To save your work and exit Resource Studio:

1. Choose Save from the Browser window’s File menu.

2. Choose Close from the File menu. The Browser window
closes, but the Shell window and Property Sheet remain
open.

3. Choose Exit from the Shell window’s File menu.

Setting Up the New Toolbar
The MFC framework uses a single bitmap to represent a set of
toolbar buttons. The correspondence between the button images in
the bitmap and the commands they represent is established in an
array in the source code. Because you have replaced the original
toolbar bitmap, you also must update this array.

1. In the Project window, double-click on mainfrm.cpp .
A Source window opens, displaying the frame window
class’s source code.
Symantec C++ User’s Guide and Reference 12-7

12 Lesson 3: Customize the Interface

12-8 Symantec C++ U
2. Scroll downward a few lines until you find the following
code:

// toolbar buttons - IDs are command buttons
static UINT BASED_CODE buttons[] = {

// same order as in the bitmap ‘toolbar.bmp’
ID_FILE_NEW,
ID_FILE_OPEN,
ID_FILE_SAVE,

ID_SEPARATOR,
ID_EDIT_CUT,
ID_EDIT_COPY,
ID_EDIT_PASTE,

ID_SEPARATOR,
ID_FILE_PRINT,
ID_APP_ABOUT,
ID_CONTEXT_HELP,

};

3. Remove and rearrange lines until the array looks like
this:

// toolbar buttons - IDs are command buttons
static UINT BASED_CODE buttons[] = {

// same order as in the new toolbar bitmap
ID_FILE_OPEN,

ID_SEPARATOR,
ID_FILE_PRINT,

ID_SEPARATOR,
ID_APP_ABOUT,

};

4. Save the code by choosing Save from the Source
window’s File menu.

The buttons[] array now contains the command IDs of the three
toolbar buttons. The ID_SEPARATOR entries indicate where spaces
should be placed between the button images when drawing the
toolbar.

In the last section you build the application and view the results of
your labor.

Building and Running the Application
To build and run the application, choose Execute Program from
the IDDE Project menu. Because no executable has yet been built,
the IDDE automatically builds TMLRead and then runs it. (When you
try to run an existing executable that needs to be rebuilt, the IDDE
asks if you want to rebuild the program before running it.)

The source files are recompiled, the resource script is compiled by
the resource compiler, and all the object files and resources are
linked together to create the final application. Then the IDDE
minimizes itself and executes the application (Figure 12-7).
ser’s Guide and Reference

Building and Running the Application
You can verify that the changes you made to the menu and toolbar
are correct. To close the application, choose Exit from the File
menu.

You now have completed initial customization of TMLRead’s
resources. You deleted excess menu items and accelerators and
installed a new toolbar bitmap. More changes to the application’s
resources can be made as the need arises; in Lesson 5, for example,
you will return to ResourceStudio to add support for a Preferences
dialog box. In the next lesson, though, you will use ClassExpress to
install functions to handle Windows messages, such as those
generated by key presses and button clicks.

Figure 12-7 TMLRead with customized menu and toolbar
Symantec C++ User’s Guide and Reference 12-9

12 Lesson 3: Customize the Interface

12-10 Symantec C++ U
ser’s Guide and Reference

Lesson 4: Add Messages
with ClassExpress

13

In Le

fram

ssons 2 and 3, you learned how to generate an application
ework and customize its user interface. However, the behavior

of the resulting application is still generic, because it is supplied
entirely by methods of MFC base classes. The inherited methods that
handle Windows messages, in particular, often do nothing more than
call DefWindowProc .

In this lesson, you use ClassExpress to expand the functionality of
the TML Reader and add member functions that handle Windows
messages announcing user actions. Member functions that handle
Windows messages are called message handlers, or just handlers.
You can think of them as callbacks, which are called by MFC when
the message they are intended to process is received. A message
handler is called in response to only one message.

The Windows message stream is the lifeblood of a Windows
application, regardless of whether the application is constructed in
an object-oriented or a procedural way. A well-behaved Windows
application can interact with the user only if it taps into the message
stream and responds to messages in nondefault ways. Using
ClassExpress to add MFC message handlers demonstrates how easy it
is to enhance the behavior of your MFC application.

In this lesson, you:

• Launch ClassExpress from the IDDE
• Use ClassExpress to add message handlers
• Edit message handlers in the IDDE Source window
• Rebuild and run the application
Symantec C++ User’s Guide and Reference 13-1

13 Lesson 4: Add Messages with ClassExpress

13-2 Symantec C++ U
At the conclusion of this lesson, you will have:

• Seen how Windows messages are handled in an MFC
application

• Used ClassExpress to perform the purely administrative
chores associated with handling Windows messages

The next section provides a brief introduction to Windows message
handling in MFC to help you understand how messages are handled
in TML Reader.

Windows Message Handling in MFC
Regardless of how it is written, a Windows application receives
messages that inform it of user actions and their consequences,
changes in the state of other applications, or changes in the state of
Windows itself. MFC transforms this message-driven model into the
object-oriented model defined by its class hierarchy, thereby
introducing several improvements to the design of applications. To
discuss this transformation and its benefits, it is necessary first to
review how messages are handled in a traditional Windows
program, and to identify the shortcomings of that approach.

Message handling in a traditional Windows application
In a traditional Windows program written in C, you handle a
Windows message by adding code directly to the window procedure
to which that message is dispatched by your application’s message
loop. The window procedure usually consists of a large switch
statement whose cases are different messages.

For example, to handle the WM_SIZE message, you must add a
case WM_SIZE to the switch . The statements following that case
statement must have to unpack and coerce the window procedure’s
parameters, wParam and lParam , into constituent parts in a way
that is specific to the WM_SIZE message. The result would look
much like the following:
ser’s Guide and Reference

Windows Message Handling in MFC
LRESULT CALLBACK WndProc(HWND hwnd, UINT msg,
WPARAM wParam, LPARAM lParam)

{
// local and static variables...

switch (msg)
{

// ...

case WM_SIZE:
{

UINT nType = (UINT)wParam;
int cx = LOWORD(lParam);
int cy = HIWORD(lParam);
// Now do what you really want to do
// ...

}
break;

// ...

default:
break;

}

return DefWindowProc(hwnd, msg,
 wParam, lParam);

}

The switch statement usually sprawls across several pages, and the
bodies of case statements often spill over the right margin of the
page. Data that must be preserved across messages or shared
between cases is usually stored in automatic or static variables visible
to every case . The result enjoys none of the benefits of
encapsulation or data hiding afforded by C++, and it is difficult to
read, comprehend, and maintain.

MFC’s design
In MFC, window procedures are part of MFC itself; you do not edit
them. Instead, the window procedures route each message to a
handler—a member function of some class—whose purpose is to
process that message. MFC provides default handlers, which
collectively define the default behavior of an MFC application. You
supply handlers only for those messages you want to process. Each
handler you supply is a member function of one of your derived
classes and overrides the inherited handler in the base class.
Symantec C++ User’s Guide and Reference 13-3

13 Lesson 4: Add Messages with ClassExpress

13-4 Symantec C++ U
However, you will sometimes find that your handler can call the
inherited handler to perform the bulk of its work.

For example, to handle the WM_SIZE message, use ClassExpress to
add a handler for this message to your View class. (By convention,
the handler for the WM_SIZE message is named OnSize .)
Whenever a WM_SIZE message is received by a window represented
by an object of your View class, your handler is called. The
prototype of this handler is as follows:

void OnSize(UINT nType, int cx, int cy);

Notice that the parameters of OnSize contain the same information
that the WM_SIZE message bears in the wParam and lParam
window procedure arguments, but in an immediately usable form.
No unpacking or typecasting is required. In general, the signature of
each handler—its return type, the number of its arguments and their
types—is specific and appropriate to the message it processes. MFC
parses the messages before calling the handler.

To route Windows messages to handlers, MFC consults tables, called
message maps, that pair Windows messages with the member
functions that handle them. You never have to edit message maps
manually because AppExpress and ClassExpress create and maintain
them for you. AppExpress creates message maps when you generate
an application framework. Their definitions are placed in the
implementation (.cpp) files of your derived classes. When you use
ClassExpress to add a handler to a class, the message map is updated
automatically with a new entry associating the chosen message with
your handler. Furthermore, ClassExpress adds a prototype for the
new handler to the class’s header file and inserts a stub for the
member function into the implementation file. All you need to do is
to add code to the body of the handler.

Note
This introduction to MFC message handling has
necessarily been brief and has glossed over several
topics you will want to learn more about. For a
definitive discussion of how MFC works, see the
expository chapters of the Microsoft Foundation
Class Library Reference.
ser’s Guide and Reference

Launching ClassExpress
Because you used AppExpress in Lesson 2 to generate an application
framework for the TML Reader, message maps have already been
created for your derived classes. During the course of this lesson,
ClassExpress updates them. ClassExpress can be run either
separately—from a Program Manager icon—or from within the
IDDE. Because you will be using the Source window to edit the
code that ClassExpress generates, you will launch ClassExpress from
within the IDDE.

Launching ClassExpress
To launch ClassExpress from the IDDE:

1. If you are not already in the IDDE, launch it.

2. Open the project tmlread.prj in directory
samples\tutorial\lesson4\start .

3. Choose ClassExpress from the Tools menu. This
launches ClassExpress and automatically loads the
project tmlread.prj .

The ClassExpress window features a multipage interface. Its left
column presents a list of the six different pages that can be displayed
in the area to the right. You will work on the Message Maps page,
which is selected automatically when you launch ClassExpress. The
ClassExpress window is displayed, as in Figure 13-1.

Figure 13-1 ClassExpress, displaying the Message Maps page
Symantec C++ User’s Guide and Reference 13-5

13 Lesson 4: Add Messages with ClassExpress

13-6 Symantec C++ U
The lists on the Message Maps page
The drop-down combobox at the top of the page labeled Class
contains a list of all derived classes in the TML Reader application.
The class selected here directly determines the contents of two lists
beneath it—those labeled Control IDs in Class and Function Name.

The list labeled Control IDs in Class contains an entry for the class
itself, as well as the names of any commands and controls that the
selected class could potentially handle.

The list labeled Function Name contains a list of message handlers
already generated for the selected class by AppExpress. These
methods are referenced in the class’s message map.

The contents of the list labeled Windows Messages depends on what
you select in the Control IDs in Class list. If you select the class name
in the Control IDs list, then the Windows Messages list contains a list
of Windows messages. However, if you select a control ID, the
Windows messages list contains notification messages appropriate to
that type of control. If you select a command ID (usually
corresponding to a menu item), the rightmost list contains names of
potential message map entries for commands.

Because the TML Reader handles messages that signal user input, the
handlers must be added to the class corresponding to the window
that receives those messages. Thus, you will add the handlers to the
View class, CTMLReadView.

Adding Message Handlers
The requirements of the TML Reader dictate the messages you will
add handlers for.

Requirement Message
Detect when the
window is resized,
so it can recompute
word-wrapping

WM_SIZE

Permit scrolling
through a document
using the vertical
scrollbar

WM_VSCROLL
ser’s Guide and Reference

Adding Message Handlers
Adding a handler for WM_SIZE
To add a handler for WM_SIZE to your View class:

1. From the drop-down list labeled Class, select the name
of the View class, CTMLReadView.

2. Use the scrollbar to move through the Windows
messages list until the message WM_SIZE is visible.

3. Double-click on WM_SIZE.

Notice that a new entry appears in the Function Name list:

afx_msg void OnSize(UINT nType, int cx, int cy);

This is the prototype of a handler for the WM_SIZE message, as it
would appear within a class declaration.

Also notice that a solid square appears to the left of the message
name, WM_SIZE, indicating that a handler now exists for that
message.

Permit scrolling
through a document
using the keyboard

WM_KEYDOWN

Change the cursor
when it is
positioned over a
hyperlink

WM_SETCURSOR

Detect clicks on
hyperlink jumps so
it can change its
display

WM_LBUTTONDOWN

Repaint the window
background

WM_ERASEBKGND

Requirement Message
Symantec C++ User’s Guide and Reference 13-7

13 Lesson 4: Add Messages with ClassExpress

13-8 Symantec C++ U
The ClassExpress window is displayed, as in Figure 13-2.

Adding other message handlers
Follow the procedure described in Steps 2 and 3 in the previous
section to add a handler for each of the messages WM_VSCROLL,
WM_KEYDOWN, WM_SETCURSOR, WM_LBUTTONDOWN and
WM_ERASEBKGND: use the scrollbar of the Windows messages list to
scroll to the message, then double-click on the message. Again,
notice that for each message you double-click on, a new prototype is
added to the Function name list, and a solid square appears to the
left of the message name.

What you have just done
When you add a handler for a message WM_messagename,
ClassExpress generates code in three places.

• The prototype for the handler is added to the declaration
of the selected class, and the handler becomes a
protected member function.

• An entry ON_WM_messagename() is added to the
message map for the class in that class’s implementation
file.

• A stub function is created for the handler in the
implementation file. The body of the function just calls
the base class handler, and contains the comment:

Figure 13-2 ClassExpress after adding a WM_SIZE handler
ser’s Guide and Reference

Saving Your Work
// TODO: Add your message handler code
 here and/or call default

For example, when you add a handler for WM_SIZE, ClassExpress
generates the following:

• The prototype for OnSize is added to the declaration of
the class CTMLReadView in tmlrdvw.h .

• An entry ON_WM_SIZE()is added to the message map
for the class CTMLReadView in its implementation file,
tmlrdvw.cpp .

• A stub function for CTMLReadView::OnSize is added
to the file tmlrdvw.cpp . The body of the function just
calls the base class handler CView::OnSize .

Now, whenever a CTMLReadView window receives a WM_SIZE
message, the member function OnSize is called to handle it.

Saving Your Work
To save your work and return to the IDDE, click Close at the bottom
of the ClassExpress window.

Clicking Close updates your project files and returns you to the
IDDE. To observe the handlers in action and confirm that they are
indeed called when you expect them to be, you can add code that
notifies you when they are called.

Adding Code to Handlers
To add code to the OnLButtonDown and OnSize handlers, follow
these steps:

1. Open the file tmlrdvw.cpp in a Source window.

2. Find the function CTMLReadView::OnLButtonDown .

3. Add the following line to the top of the function:

AfxMessageBox("Left button clicked!");

4. Now find the function CTMLReadView::OnSize .
Symantec C++ User’s Guide and Reference 13-9

13 Lesson 4: Add Messages with ClassExpress

13-10 Symantec C++ U
5. Add the following line to the top of the function:

::MessageBeep(-1);

6. Type Ctrl+S to save your changes.

After the project is rebuilt, you’ll want to confirm that the appropriate
statement executes whenever you click in the client area or resize
the window.

Building and Running the Project
To see the effect of what you’ve done, perform these steps:

1. Choose Build from the Project menu to update the
executable.

2. Choose Execute Program from the Project menu to
run the program.

3. With the mouse cursor in the client area of the program’s
window, press the left mouse button. A box containing
the message “Left button clicked!” is displayed
(Figure 13-3). This message is displayed each time you
press the left mouse button in the client area. It is not
displayed when you release the left mouse button, move
the mouse, or click with the right mouse button. To
remove the message box, click OK.

Figure 13-3 TML Reader running, with message box displayed
ser’s Guide and Reference

Summary
4. Now resize the window by dragging a corner of the
window’s border to a different position. You hear a beep
when you release the mouse button.

Note
You will already have heard beeps during the initial
sequence of messages received by the View
window. This is normal: the window receives
multiple WM_SIZE messages early in its life-cycle.

5. After you have confirmed to your satisfaction that the
handlers are called when, and only when, they ought to
be called, quit the program by choosing Exit from
TMLRead’s File menu.

Summary
In this lesson, you have learned:

• How Windows messages are handled in an MFC
application

• How to launch ClassExpress from the IDDE and use it to
add message handlers

• How to verify that the message handlers are called in
response to the messages they handle

In the next lesson, you implement a Preferences dialog box. You
learn how MFC and ClassExpress make it easy to create a dialog box,
validate its data, and exchange data between the dialog box and
your application. In TML Reader’s present state, the only preference
one could have would be for the application to actually do
something. Toward that end, we have added code to the result of
this lesson so that your starting point in the next lesson is a
functioning TML Reader.
Symantec C++ User’s Guide and Reference 13-11

13 Lesson 4: Add Messages with ClassExpress

13-12 Symantec C++ U
ser’s Guide and Reference

Lesson 5: Add a Dialog
Box with ClassExpress

14

In Le

Win

sson 4, you learned how to use ClassExpress to add handlers for
dows messages. The application from that lesson is still skeletal.

Its interface is complete, and it receives the Windows messages it
needs to act upon, but every user action ultimately results in a call to
a stub function. After completing Lesson 4, the next step is writing
code that supplies functionality.

This lesson shows you how to use some additional, powerful
features of Symantec C++. To accomplish this, a body of code that
supplies some substantial functionality has been added to the
application you built in Lesson 4. In between the end of Lesson 4
and the start of this lesson, only the Source window has been used
to create or change C++ files in the project. That is, none of the new
code has been automatically generated; it has all been manually
entered.

Start this lesson with the project samples\tutorial\lesson5\
start\tmlread.prj , located in the directory where you installed
Symantec C++. The first task you will perform is to build that project.
Once you have done so, you will have a fully functional TML
Reader.

In the remainder of the lesson, you will implement a Preferences
dialog box. In addition to supplying C++ code for the start of this
lesson, we have also already used ResourceStudio to create a dialog
resource that defines the Preferences dialog box. However, this
dialog box is not yet connected to the application. It lies dormant
within tmlread.rc . You will perform all the tasks necessary to
animate it and make it fully functional.
Symantec C++ User’s Guide and Reference 14-1

14 Lesson 5: Add a Dialog Box with ClassExpress

14-2 Symantec C++ U
Specifically, you’ll use ResourceStudio to:

• Add a new menu item for invoking the Preferences
dialog box

• Launch ClassExpress

Within ClassExpress, you’ll:

• Create a new class that represents the Preferences
dialog box

• Add a handler for the new menu item

• Add a handler to this new class for one of the buttons in
the dialog box

• Add data members to the new class that transfer
information between the application’s data and the
controls in the dialog box. You will also specify
validation criteria for the values that the user enters in
the dialog box, so that MFC can perform automatic data
validation.

Finally, within the IDDE, you will:

• Add code for the two new handlers

• Rebuild the project and examine the results of your
efforts

After completing this lesson, you will have:

• Added a new menu command

• Used MFC and ClassExpress to implement a dialog box,
validate its data, and exchange data between the dialog
box and your application

The next section walks you through building and running the TML
Reader. It also discusses how the Reader displays files and how to
create a Preferences dialog box which lets the user configure how
the files are displayed.
ser’s Guide and Reference

Building and Exploring the TML Reader
Building and Exploring the TML Reader
This section acquaints you with the major features of the TML
Reader. After building the Reader, you will use it to read sample files
that contain TML formatting strings.

Before building the Reader, you must first copy the file
VIEWHDRS.H from the TUTORIAL\TMLREAD directory to the
TUTORIAL\LESSON5\BACKUP directories. Various TMLRead
modules include this header file, and cannot be compiled without it.

Building the Reader
Follow the first four steps to build the TML Reader.

1. If you are not already in the IDDE, launch it.

2. Open the project tmlread.prj in the directory
samples\tutorial\lesson5\start located
beneath the directory where you installed Symantec C++.

3. Choose Build from the Project menu.

4. Choose Execute Program from the Project menu to run
the program. The IDDE minimizes, and TMLRead is
launched. No file is yet displayed.

Exploring the capabilities of the Reader
Now use the Reader to browse two sample files that illustrate the
kinds of formatting that the Reader can display.

1. Choose Open from TMLRead’s File menu.

2. In the File Open dialog box, select the file
sample.tml in the
samples\tutorial\lesson5\start directory,
then click OK. TMLRead reads, parses, and displays the
file.

3. Scroll within the document using the arrow keys and the
Page Up and Page Down keys. Code within
CTMLReadView::OnKeyDown causes the scrolling to
occur.
Symantec C++ User’s Guide and Reference 14-3

14 Lesson 5: Add a Dialog Box with ClassExpress

14-4 Symantec C++ U
4. Now scroll by using the vertical scroll bar. In this case,
code within CTMLReadView::OnVScroll is
responsible for the scrolling.

5. Drag either the left or right border of the window to
resize it. Notice that the ends of lines are automatically
adjusted so that paragraphs wrap properly, filling almost
all of the window’s width. The handler
CTMLReadView::OnSize causes rewrapping to occur.

6. If you are not now displaying the beginning of the file,
press the Home key. The heading “Contents” announces
the table of contents of this document, presented as a
hierarchical bulleted list of the major sections of
sample.tml . Each line in the table of contents is
underlined and displayed in green. These properties of
the text indicate that it is a hyperlink. Place the cursor
over any hyperlink; the cursor changes to a hand with an
extended index finger, a visual cue that you can
meaningfully click on the text. Move the cursor so that it
is not over a hyperlink; the cursor reverts to the default
cursor. This behavior is provided by
CTMLReadView::OnSetCursor after a necessary
initialization by CTMLReadView::PreCreateWindow .

7. Click on the last hyperlink in the Contents section,
named “Hyperlinks,” with the left mouse button. This
displays the last section of the file. The method
CTMLReadView::OnLButtonDown handles the mouse
click by determining whether or not it occurred on a
hyperlink; if a hyperlink is clicked, the jump occurs.

8. At the end of the last paragraph, there is the following
hyperlink phrase: “here is a link to another sample
document.” Click on this phrase. The file complex.tml
is read and displayed. Again,
CTMLReadView::OnLButtonDown causes the jump to
occur.

9. Choose Previous File from TMLRead’s File menu to
return to sample.tml .
ser’s Guide and Reference

Building and Exploring the TML Reader
10. Examine each section of sample.tml by clicking each
hyperlink in the document’s contents at the top of the
file. This will give you a good sense of the features of
TML, the subset of HTML (HyperText Markup Language)
recognized by the Reader.

11. Choose Print Preview from TMLRead’s File menu to see
a WYSIWYG display of how sample.tml would look if
it were printed on the current default printer. The
presence and functionality of the buttons at the top of
the Print Preview window has been supplied almost
entirely by MFC. When you finish looking at the Print
Preview display, click Close to return to the main view of
the Reader.

12. Choose Exit from TMLRead’s File menu. This closes the
Reader and returns you to the IDDE.

Turning aspects of the Reader’s display into preferences
A few numerical quantities that help determine how TMLRead
displays documents are at present hard-coded. These numbers are
stored as int data members of CTMLReadView and are described
in the following table:

Table 14-1 Quantities which the Preferences dialog box manipulates

CTMLReadView data
member

TMLRead display
characteristic

nParVSpace Vertical space between
paragraphs

nMargin Amount of horizontal space
between the document and
the edges of the window

nIndent Amount by which items in a
list are offset from the left
margin
Symantec C++ User’s Guide and Reference 14-5

14 Lesson 5: Add a Dialog Box with ClassExpress

14-6 Symantec C++ U
The CTMLReadView constructor calls
CTMLReadView::SetDefaultPrefs to initialize these data
members with default values provided by the following enum
constants (defined in the class declaration):

 eDftParVSpace = 12
 eDftMargin = 10
 eDftIndent = 40

The Preferences dialog box lets the user alter these values, as
shown in Figure 14-1.

Of course, the user should be allowed to configure many other
aspects of the Reader’s display, such as colors and fonts. However,
implementing this simple Preferences dialog box gives you the
fundamental skills needed to realize more ambitious designs using
the Symantec C++ tools.

Before you connect the Reader’s data with the controls of the
Preferences dialog box, you need to first outfit the user interface
with a way to call the dialog box. In the next section, therefore,
you’ll use ResourceStudio to add a menu item to TMLRead.

Figure 14-1 The Preferences dialog box
ser’s Guide and Reference

Using ResourceStudio to Add a Menu Item
Using ResourceStudio to Add a Menu Item
To add a Preferences item to the View menu of TMLRead, launch
ResourceStudio from within the IDDE so that it loads tmlread.rc .
To do this, follow these steps:

1. Open the Project window if it is not already open.

2. Double-click on tmlread.rc in the Project window.
When asked if you want to use ResourceStudio to edit
this file, click Yes.

The Browser window of ResourceStudio opens, as
shown in Figure 14-2.

3. Select the item named Menu in the upper-left pane. The
lower-left pane now displays the ID of the TMLRead
menu, IDR_MAINFRAME.

4. Double-click on IDR_MAINFRAME in the lower-left
pane. The pane on the right now contains a
representation of the TMLRead menu, shown in
Figure 14-3.

Figure 14-2 The Browser window of ResourceStudio
Symantec C++ User’s Guide and Reference 14-7

14 Lesson 5: Add a Dialog Box with ClassExpress

14-8 Symantec C++ U
The Property Sheet and the Test menu window also
open; they are described in Chapter 12, “Lesson 3:
Customize the Interface.”

5. In the right pane, click on the item MENUITEM Status
Bar to select it. This item is the last one belonging to the
POPUP View item. When a new menu item is added, it
will appear beneath this one.

6. Choose New Item from the Menu menu in the Browser
window. This inserts a new item whose text is Item , and
creates a new ID for it. The Property Sheet, shown in
Figure 14-4, shows these settings.

Figure 14-3 ResourceStudio displaying the TMLRead menu

Figure 14-4 The Property Sheet after adding a new item
ser’s Guide and Reference

Using ResourceStudio to Add a Menu Item
7. Click on the Property Sheet to make it active.

8. Click on the General tab near the top of the window to
ensure that the General page is displayed.

9. In the ID textbox, type ID_VIEW_PREFS to change the
ID name.

10. In the text textbox, type &Preferences... .

11. Click on the Connect tab.

12. On this page, type the string Customize the
appearance of the view . This prompt will appear
in the status bar whenever the Preferences item is
selected.

13. Save your work by choosing Save from the Browser
window’s File menu.

14. Close the Browser window, close the ResourceStudio
Shell window (and with it, the Property Sheet), and
return to the IDDE.

You have now created the desired menu item. However, TMLRead
does not yet contain a command handler for ID_VIEW_PREFS. In
the next section, you will add one using ClassExpress, in which the
bulk of the remaining work will take place.

Two command handlers must be added—one for ID_VIEW_PREFS,
the other for the Default button of the Preferences dialog box.
Thus, a class must be created that represents the Preferences dialog
box in the same way that CAboutDlg represents the About dialog
box. The handler for the Default button will be a method for this
new class. In the next section, you use ClassExpress to add the
CPrefDialog class.
Symantec C++ User’s Guide and Reference 14-9

14 Lesson 5: Add a Dialog Box with ClassExpress

14-10 Symantec C++ U
Using ClassExpress to Create a New Dialog Class
Follow these steps to create a class that corresponds to the
Preferences dialog box:

1. Launch ClassExpress by choosing ClassExpress from
the IDDE’s Tools menu.

2. Click the Add Class button. The Add Class dialog box
opens, as shown in Figure 14-5. ClassExpress detects that
a new dialog box has been added to the project, and
assumes that you want to create a corresponding class.

It initializes the selections in the Class Type and Dialog
ID drop-down lists to reflect this assumption: Class Type
is set to Dialog, and Dialog ID to IDD_PREFDIALOG.

The focus is in the New Class Name editbox.
ClassExpress has suggested the name CTestDialog
and has selected the substring Test so that you can
change it just by typing. It has also suggested
TestDial.cpp as the name of the implementation file.

3. Type Pref to change the name of the dialog class to
CPrefDialog . Notice that ClassExpress accordingly
changes the suggested name of the implementation file
to PrefDial.cpp .

4. Click OK in the Add Class dialog box to accept the
settings. ClassExpress confirms the operation with a
message box.

Figure 14-5 The Add Class dialog box
ser’s Guide and Reference

Using ClassExpress to Add Methods
5. Click OK to close this message box. This returns you to
the ClassExpress window, which displays the Message
Maps page, as shown in Figure 14-6.

Using ClassExpress to Add Methods
In this section, you’ll add two methods that respond to user actions.
One opens the Preferences dialog box when the Preferences
menu item is chosen, and updates the Reader’s display if the OK
button is clicked in the dialog box. The other method handles the
clicking of the Default button in the Preferences dialog box. You
will see later why it is unnecessary to add handlers for the OK and
Cancel buttons.

First you’ll add a method that handles the command generated when
Preferences is chosen from the View menu. This method also is
responsible for updating the application to reflect any changed
preferences. Then, you’ll add a method that responds to a click on
the Default button of the Preferences dialog box.

The procedure in each case is similar to the one that you used in
Lesson 4. The results of your actions also will be similar:
ClassExpress adds these methods to class declarations, add entries to
Message Maps, and create stub functions for the methods. When you
return to the IDDE, you will only need to write the code for these
two methods.

Figure 14-6 ClassExpress displaying the Message Maps page
Symantec C++ User’s Guide and Reference 14-11

14 Lesson 5: Add a Dialog Box with ClassExpress

14-12 Symantec C++ U
Creating a handler for the Preferences command
You will use ClassExpress to bind the ID_VIEW_PREFS command
ID to a new method that creates and initializes an object of class
CPrefDialog , and then uses this object to display the dialog box.
When the user closes the dialog box, this method determines
whether the user clicked OK or Cancel. If OK was clicked,
application data must be updated, and the view must be redrawn.

This method needs access to data members of CTMLReadView in
order to initialize the dialog box and to update those data members
if the user clicks OK. Because of these requirements, the method is
added to the class CTMLReadView.

1. Select the class CTMLReadView in the Class combobox
on the Message Maps page.

2. In the Control IDs in the Class listbox, select
ID_VIEW_PREFS, the ID of the command issued when
the Preferences item in the View menu is chosen. The
listbox on the right, Windows Messages, now contains
the two items, COMMAND and UPDATE_COMMAND_UI.

3. Double-click on COMMAND in the Windows Messages
listbox. The Method Name dialog box opens, asking
you for a name for the method that is called when
Preferences is chosen. ClassExpress suggests the name
OnViewPrefs for this method.

4. Click OK in the Method Name dialog to accept the
name OnViewPrefs .

ClassExpress adds this method to the declaration of class
CTMLReadView in the header file for the class. It also updates the
class implementation file by adding an entry to the class’s Message
Map, and by adding a stub function
CTMLReadView::OnViewPrefs .
ser’s Guide and Reference

Using ClassExpress to Add Methods
Creating a handler for the Default button of the
Preferences dialog box
You will now add a method to CPrefDialog for handling clicks on
the Default button in the Preferences dialog box. This method must
update the values displayed in the controls of the dialog box with
the same default values used to initialize the CTMLReadView data
members nParVSpace , nMargin , and nIndent . Because the
default values are public enum constants, this method requires no
access privileges to CTMLReadView.

Follow these steps to add this method:

1. Select the class CPrefDialog in the Class combobox
on the Message Maps page.

2. In the Control IDs in Class listbox, select
ID_PREFS_DEFAULT, the ID of the Default button. The
listbox on the right, Windows Messages, now contains
the two items BN_CLICKED and BN_DOUBLECLICKED.

Note
These so-called messages are actually notifications
that the button sends to its parent, the Preferences
dialog box, via WM_COMMAND messages. BN_xxx
stands for Button Notification. The BN_xxx
identifiers are defined in windows.h .

3. In the Windows Messages listbox, double-click on
BN_CLICKED, the notification sent when the Default
button is clicked. The Method Name dialog box opens,
suggesting OnClickedPrefsDefault for the method
name.

4. Change this name to OnDefault .

5. Click OK in the Method Name dialog box to return to
the ClassExpress main window.

As it did when you added CTMLReadView::OnViewPrefs ,
ClassExpress adds a prototype for OnDefault to the declaration of
the class CPrefDialog in the class’s header file. It also updates the
class implementation file by adding an entry to the class’s Message
Map. It also adds a stub function CPrefDialog::OnDefault .
Symantec C++ User’s Guide and Reference 14-13

14 Lesson 5: Add a Dialog Box with ClassExpress

14-14 Symantec C++ U
Once you are back in the IDDE, you must write code to implement
these two handlers. To have the handlers to perform their intended
tasks, you must first make it possible to transfer data into and out of
the controls of the Preferences dialog box. MFC and ClassExpress
make it surprisingly easy not only to transfer data to and from a
dialog box, but also to validate data that the user has entered into a
dialog’s controls. Adding these capabilities is addressed in the next
section, the last one in which you use ClassExpress.

Adding Dialog Data Exchange and Validation
Windows programs written in C traditionally exchange data with
dialog boxes by fetching data from each control in a manner
particular to the control type (edit control, radio button, check box,
and so on) and particular to the intended type of the data (string,
integer, long integer, and so on). Then, the extracted data is usually
stored in static storage. Also, there are rarely any general-purpose
facilities from Windows API for validating data that the user enters in
a dialog box—placing another burden on the programmer.

MFC and ClassExpress add order, simplicity and elegance to this
situation. To use the MFC model of dialog box data exchange and
validation, you must first add data members to the dialog class. (This
replaces the ad hoc collection of static data favored by the
traditional approach.) You use ClassExpress to associate data
members with controls in the dialog box. MFC then automates the
transfer of data between the dialog’s controls and the dialog class
data members. When adding a data member with ClassExpress, you
also specify its type and the validation criteria in the associated
control. MFC uses this information to perform its automatic data
validation.

In the next step, you’ll add data members to the CPrefDialog
class using the Data Transfer page of ClassExpress. After you
complete this task, there is a review of the changes that ClassExpress
has made to the CPrefDialog source files, and an explanation of
how MFC accomplishes data exchange and validation.
ser’s Guide and Reference

Adding Dialog Data Exchange and Validation
Throughout this section, you’ll work with the CPrefDialog class
on the Data Transfer page of ClassExpress. Perform the following
steps to set up ClassExpress for this part of the lesson:

1. In the upper-left listbox, select the second item, Data
Transfer. ClassExpress opens the Data Transfer page in
the larger pane on the right, as shown in Figure 14-7.

2. Be sure that CPrefDialog is selected in the Class Name
combobox at the top of the Data Transfer page.

Figure 14-7 ClassExpress displaying the Data Transfer page
Symantec C++ User’s Guide and Reference 14-15

14 Lesson 5: Add a Dialog Box with ClassExpress

14-16 Symantec C++ U
Adding data members to CPrefDialog
To add data members, to CPref Dialog, carry out the following steps:

1. Click on the Add Variable button. The Add Member
Variable dialog box opens, as shown in Figure 14-8.

2. Select IDC_PARVSPACE from the Control ID combobox.

3. Change the Member Variable Name to nParVSpace .
(For simplicity, you can name the member variables of
CPrefDialog the same as the members of CTMLReadView
to which they correspond.)

4. For the DDX Type option, select Value.

In fact, the Control Name combobox does not contain
symbolic indentifiers for the three edit controls in the
Preferences dialog box. Rather, you see only the integer
resource ids of these controls. Select 3001, the resource
id of the Paragraph Spacing edit control.

Figure 14-8 The Add Member Variable dialog box
ser’s Guide and Reference

Adding Dialog Data Exchange and Validation
5. In the Variable Type combobox, select int . Two new
textboxes, Minimum Value and Maximum Value, appear
at the bottom of the dialog box, as shown in Figure 14-9.

6. Type 0 in the Minimum Value field.

7. Type 100 in the Maximum Value field.

8. Click OK in the Add Member Variable dialog box. The
Data Transfer page now reflects this additional data
member and its validation criteria in the Control ID and
Variables list, as shown in Figure 14-10.

Figure 14-9 Add Member Variable with
Variable Type set to int

Figure 14-10 The Data Transfer page after adding nParVSpace
Symantec C++ User’s Guide and Reference 14-17

14 Lesson 5: Add a Dialog Box with ClassExpress

14-18 Symantec C++ U
9. Follow the procedure described in steps 3 through 10 of
the previous task to add an int variable named
nMargin associated with the control IDC_MARGIN. Set
its minimum and maximum values to 0 and 50 ,
respectively.

In fact, the Control Name combobox does not contain
symbolic identifiers for the three edit controls in the
Preferences dialog box. Rather, you see only the integer
resource ids of these controls. Therefore, add a data
member corresponding to the control 3004, the resource
id of the Margin edit control.

10. Then, follow steps 3 through 10 to add a final int
variable, nIndent , associated with the control
IDC_INDENT. Sets its minimum and maximum values to
0 and 120 , respectively.

In fact, the Control Name combobox does not contain
symbolic identifiers for the three edit controls in the
Preferences dialog box. Rather, you see only the integer
resource ids of these controls. Therefore, add a data
member corresponding to the control 3005, the resource
id of the Indent edit control.

To return to the IDDE, click the Close button. The IDDE’s Project
window now lists the source file prefdial.cpp .

Seeing the changes in the CPrefDialog source files
As a result of adding data members to CPrefDialog , ClassExpress
makes various changes to the header and implementation files of the
class CPrefDialog including:

Changes to the class definition
ClassExpress added the following lines to the declaration of
CPrefDialog in prefdial.h :
ser’s Guide and Reference

Adding Dialog Data Exchange and Validation
// Dialog Data
//{{AFX_DATA(CPrefDialog)
enum { IDD = IDD_PREFDIALOG };
int nParVSpace;
int nMargin;
int nIndent;
//}}AFX_DATA

// Implementation
protected:

virtual void DoDataExchange(CDataExchange*
 pDX);// DDX/DDV support

The comments help ClassExpress find where subsequently added
data members should be declared. (The variables that ClassExpress
adds are public.) The enum constant IDD is used by the
CPrefDialog constructor as an argument to the constructor of its
base class, CDialog .

Changes to the constructor
ClassExpress changes the CPrefDialog constructor so that it
appears as follows:

CPrefDialog::CPrefDialog(CWnd* pParent /*=NULL*/)
: CDialog(CPrefDialog::IDD, pParent)

{

//{{AFX_DATA_INIT(CPrefDialog)
nParVSpace = 0;
nMargin = 0;
nIndent = 0;
//}}AFX_DATA_INIT

}

The AFX_DATA_INIT comments are used by ClassExpress to
delimit the location within the constructor where data members
participating in data exchange and validation should be initialized.
All the data members that you added are set to 0. Therefore, before
it displays the Preferences dialog box, the handler
CTMLReadView::OnViewPrefs first sets these CPrefDialog data
members to the values of the CTMLReadView data members to
which they correspond.

Changes to the DoDataExchange function
The protected member function DoDataExchange is the
workhorse that transfers data between the added data members and
the controls of the Preferences dialog box. It also validates the
values entered into the controls when the user clicks OK. (The
Symantec C++ User’s Guide and Reference 14-19

14 Lesson 5: Add a Dialog Box with ClassExpress

14-20 Symantec C++ U
acronym DDX stands for Dialog Data eXchange; DDV stands for
Dialog Data Validation.) ClassExpress also writes the
DoDataExchange function, using the information you gave it when
you added each variable. The implementation of the function, in
PrefDial.cpp , looks like this:

void CPrefDialog::DoDataExchange(CDataExchange*
 pDX)
{

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CPrefDialog)
DDX_Text(pDX, IDC_PARVSPACE, nParVSpace);
DDV_MinMaxInt(pDX, nParVSpace, 0, 100);
DDX_Text(pDX, IDC_MARGIN, nMargin);
DDV_MinMaxInt(pDX, nMargin, 0, 50);
DDX_Text(pDX, IDC_INDENT, nIndent);
DDV_MinMaxInt(pDX, nIndent, 0, 120);
//}}AFX_DATA_MAP

}

Again, the AFX_DATA_MAP comments serve only as delimiters used
by ClassExpress when adding data members.

The overloaded DDX_xxx and DDV_xxx functions are declared in the
MFC include file afxdd_.h . These functions all take a pointer, pDX,
to a CDataExchange object. This object contains two public data
members that enable the functions.

The CDataExchange data member m_bSaveAndValidate
informs the functions of the direction of the transfer. If
m_bSaveAndValidate is TRUE, then the transfer is from the
controls to the data members; if this data member is FALSE, the
transfer is from the data members to the controls. The DDX_xxx
functions perform the appropriate transfer in each case. If
m_bSaveAndValidate is TRUE, each DDV_xxx validation function
checks whether the data meets the validation criteria it implements.
If the data fails to meet the criteria, the validation function opens a
message box informing the user, and sets the focus to the control
containing the invalid value. If m_bSaveAndValidate is FALSE,
the validation functions do nothing.

The CDataExchange data member m_pDlgWnd is a pointer to the
CWnd whose data is being transferred and validated. The presence of
this data member saves DoDataExchange from having to pass the
this pointer to every DDX_xxx and DDV_xxx function.
ser’s Guide and Reference

Writing Code for the New Handlers
Note
Because DoDataExchange is a CWnd member
function and m_pDlgWnd is a CWnd*, DDX and
DDV can be used with any window, and not just
with those derived from CDialog .

DoDataExchange is called by the UpdateData function
whenever data exchange must take place. You never call it directly.
In particular, DoDataExchange is called when a window or dialog
box is first opened to initialize its controls. It is also called by the
CDialog member function OnOK when a user clicks on a button in
the dialog box with an ID of IDOK. Thus in the Preferences dialog
box, the inherited handler for the OK button already performs data
transfer and validation, so you do not need to supply an override.
Similarly, the CDialog member function OnCancel simply
terminates a dialog box—behavior completely suitable for the
Preferences dialog box.

With these concepts in mind, you can clearly see the purpose and
effect of the handlers that you supply in the next task.

Writing Code for the New Handlers
Now, the only task left is to provide implementations of the handlers
CTMLReadView::OnViewPrefs and
CPrefDialog::OnDefault . Both handlers are straightforward.

Implementing CTMLReadView::OnViewPrefs
Carry out these steps to create the handler:

1. In the Project window, double-click on tmlrdvw.cpp .
This opens a Source window in which you can edit the
file tmlrdvw.cpp .

2. Find the group of #include statements toward the top
of the file. Add this line after the last #include
statement:

#include "prefdial.h"

3. Find the function CTMLReadView::OnViewPrefs . (It
is at the bottom of the file.)
Symantec C++ User’s Guide and Reference 14-21

14 Lesson 5: Add a Dialog Box with ClassExpress

14-22 Symantec C++ U
4. Edit the function by entering the following code. (You
may omit the lengthy comments.)

void CTMLReadView::OnViewPrefs()
{

CPrefDialog dlgPref;

// Initialize dlgPref data members with
// current values from CTMLReadView
//
dlgPref.nParVSpace = nParVSpace;
dlgPref.nMargin = nMargin;
dlgPref.nIndent = nIndent;

// Display the dialog modally.
// If user clicks OK, DoDataExchange
// will be called to validate data in
// the controls. If the controls hold valid
// values, their contents will be
// transferred to the CPrefDialog data
// members. In that case, we must transfer
// the values to the corresponding
// CTMLReadView data members.
//
if (dlgPref.DoModal() == IDOK)
{

// Transfer the data to our view class
//
nParVSpace = dlgPref.nParVSpace;
nMargin = dlgPref.nMargin;
nIndent = dlgPref.nIndent;

// Make sure that the view is redrawn
// to reflect the new preferences
//
bWordsWrapped = FALSE;
OnUpdate(NULL, 0L, NULL);

}
}

5. Save your work by choosing Save from the File menu of
the Source window.

6. Close the Source window by clicking on the close box in
the upper-left corner of the window (on the caption bar).

Implementing CPrefDialog::OnDefault
This handler is even simpler. To create it, perform these steps:
ser’s Guide and Reference

Writing Code for the New Handlers
1. In the Project window, double click on prefdial.cpp .
This opens a Source window in which you can edit the
file prefdial.cpp .

2. Find the group of #include statements, toward the top
of the file. Add this statement to the end of the group:

#include "viewhdrs.h"

3. Find the function CPrefDialog::OnDefault . (It is at
the bottom of the file.)

4. Edit the function by entering the following code. (You
may omit the lengthy comments.)

void CPrefDialog::OnDefault()
{

// Set data members to default values
//
nParVSpace = CTMLReadView::eDftParVSpace;
nMargin = CTMLReadView::eDftMargin;
nIndent = CTMLReadView::eDftIndent;

// Transfer these values to the controls.
// UpdateData calls DoDataExchange to effect
// the transfer. The argument determines the
// direction of the transfer:
// TRUE causes values to move from the
// controls to the data members;
// FALSE, used here, transfers the values of
// the data members to the controls.
// UpdateData uses its argument to set the
// m_bSaveAndValidate data member of the
// CDataExchange object whose address
// it passes to DoDataExchange.
//
UpdateData(FALSE);

}
5. Save your work by choosing Save from the File menu of

the Source window.

You have now completed all the tasks necessary for the
Preferences dialog box to be fully functional. To conclude this
lesson, you will rebuild TMLRead and test the dialog box.
Symantec C++ User’s Guide and Reference 14-23

14 Lesson 5: Add a Dialog Box with ClassExpress

14-24 Symantec C++ U
Rebuild and Test TMLRead
To verify that your work has achieved the desired goal, rebuild and
run the Reader, making it a point to use the new features. To do this,
follow these steps:

1. Choose Build from the Project menu to incorporate the
changes you have made into the executable file
tmlread.exe .

2. Choose Execute Program from the Project menu to
run the Reader.

3. Choose Open from the File menu of TMLRead. Again,
load the file sample.tml .

4. Choose Preferences from the View menu of TMLRead.

5. Enter 25 into all three edit controls.

6. Click on the Default button to verify that the
CPrefDialog data members are set to default values
by CPrefDialog::OnDefault .

7. Click Cancel. You should see no change in the display of
sample.tml .

8. Again, choose Preferences from the View menu of
TMLRead.

9. Change the values to 150 , 40 , and 10 , respectively.

10. Click OK. Observe the message box informing you of
invalid data.

11. Click OK to close the message box. The focus returns to
the editbox containing 150 .

12. Continue experimenting with the Preferences dialog
box, eventually clicking OK when valid data is entered in
the controls. After you have confirmed that the dialog
box is performing as you want, exit the program by
choosing Exit from the Reader’s File menu. This returns
you to the IDDE.
ser’s Guide and Reference

Summary
Summary
In this lesson, you learned:

• How to use the ResourceStudio to add a new menu item

• How to use ClassExpress to add a handler that responds
to the choice of that menu item

• How to use ClassExpress and MFC to implement a dialog
box, validate its data, and exchange data between the
dialog box and your application

This concludes the tutorial section. These lessons have been an
instructive introduction to the capabilities of Symantec C++. By this
point, you will have acquired the techniques and knowledge you
need to apply the features of Symantec C++ to your own projects.
Symantec C++ User’s Guide and Reference 14-25

14 Lesson 5: Add a Dialog Box with ClassExpress

14-26 Symantec C++ U
ser’s Guide and Reference

	Learning Symantec C++ by Example
	Introduction to the Tutorial 9
	Prerequisite Knowledge
	The Tutorial Application
	Tutorial Structure
	Tutorial Source Code

	Lesson 1: Create the DOS Application 10
	Starting the IDDE and Loading a Project
	Editing Source Code
	Building and Running the Application
	Setting Up a Workspace for Debugging
	Running in Debugging Mode
	Setting and running to breakpoints
	Viewing data
	Stepping through code
	Running to the end
	Ending the debugging session

	Lesson 2: Generate an Application Framework 11
	Generating the Framework
	Building and Running the New Project
	Using Precompiled Headers
	Adding TRACE Calls with Class Editor
	Watching TRACE Output in the Trace Messages Window...
	The Application Framework and MFC Classes

	Lesson 3: Customize the Interface 12
	Launching ResourceStudio
	Customizing the Menu
	Customizing the Accelerator Table
	Importing a New Toolbar Bitmap
	Exiting ResourceStudio
	Setting Up the New Toolbar
	Building and Running the Application

	Lesson 4: Add Messages with ClassExpress 13
	Windows Message Handling in MFC
	Message handling in a traditional Windows applicat...
	MFC’s design

	Launching ClassExpress
	The lists on the Message Maps page

	Adding Message Handlers
	Adding a handler for WM_SIZE
	Adding other message handlers
	What you have just done

	Saving Your Work
	Adding Code to Handlers
	Building and Running the Project
	Summary

	Lesson 5: Add a Dialog Box with ClassExpress 14
	Building and Exploring the TML Reader
	Building the Reader
	Exploring the capabilities of the Reader
	Turning aspects of the Reader’s display into prefe...

	Using ResourceStudio to Add a Menu Item
	Using ClassExpress to Create a New Dialog Class
	Using ClassExpress to Add Methods
	Creating a handler for the Preferences command
	Creating a handler for the Default button of the P...

	Adding Dialog Data Exchange and Validation
	Adding data members to CPrefDialog
	Seeing the changes in the CPrefDialog source files...
	Changes to the class definition
	Changes to the constructor
	Changes to the DoDataExchange function

	Writing Code for the New Handlers
	Implementing CTMLReadView::OnViewPrefs
	Implementing CPrefDialog::OnDefault

	Rebuild and Test TMLRead
	Summary

