
Symantec C++
More about Testing
Programs

Part Five

23 Controlling and
Configuring the
Debugger

24 Commands Available
in Debugging Mode

Symantec C++ Use
r’s Guide and Reference

 Controlling and Configuring
the Debugger

23

This

that

chapter describes the commands on the IDDE’s Debug menu
 you use to run the debugger. This chapter also explains how to

use breakpoints and watchpoints effectively.

Chapter 8, “Testing an Application,” presents an overview of the
Symantec C++ debuggers and explains how to perform typical
debugging tasks.

Chapter 24, “Commands Available in Debugging Mode,” describes
the commands and the functionality of each of the debug windows
that you can open from the Views palette.

Commands on the Debug Menu
Debugging commands are located in the Debug menu on the
IDDE’s main menu bar. Figure 23-1 shows the Debug menu
commands.

Figure 23-1 Debug menu commands
Symantec C++ User’s Guide and Reference 23-1

23 Controlling and Configuring the Debugger

23-2 Symantec C++ U

Start/Restart Debugging

Stop Debugging

Step Into
This section describes the commands in the Debug menu in the
order shown in Figure 23-1.

Note
Frequently used debugging commands are available
from the Debug toolbox. See “Debug Toolbox
Icons” in this chapter to learn how to use the Debug
toolbox.

Starts a debugging session. During a debugging session, any open
Source window changes from editing mode to debugging mode. In
debugging mode you can set breakpoints, jump to a specific line, or
view assembly instructions generated for a line of code. You cannot,
however, edit the source code. You must exit the debugging session
(return to the editing session) to modify the source code.

Note
If you need to specify command-line parameters in
your application, you can do so in the Run
Arguments dialog box, available by choosing the
Arguments command from the IDDE’s Project
menu.

If debugging is in progress, choosing Start/Restart Debugging
restarts the application.

Note
If you want to run the program without debugging
it, choose the Execute Program from the Project
menu.

Exits the current debugging session and switches the IDDE into
editing mode.

Executes the program until it reaches the next source-level
statement. This command lets you step through the program’s code
at the source level, statement by statement.
ser’s Guide and Reference

Commands on the Debug Menu

Step Over

Return from Call

Go until Breakpoint

Go until Next Function

Go until End

Break
If Step Into is used on a procedure or function call, the debugger
steps into the first statement of the function only if tracing is enabled
for the module containing that function. For more information, see
“The Project Window,” in Chapter 24, “Commands Available in
Debugging Mode.”

If the Assembly window is the active window, this command
executes to the next assembly (as opposed to source level)
instruction. If the assembly window is open but is not the active
window when you use this command, it updates to show the next
instruction to be executed.

Executes the program to the next statement, or until a breakpoint or
watchpoint is triggered or an exception is raised. If the current
statement is a call to a procedure or function, the program executes
to the next statement following the call.

If the Assembly window is the active window, this command
executes the program to the next assembly instruction without
tracing into function calls. If the current instruction is a call to a
function, the program executes to the assembly instruction following
the call.

Executes the program up to the current function’s return address, or
until a breakpoint or watchpoint is triggered or an exception is
raised. This command is useful when executing the rest of the
current function or procedure after having stepped into it, then
stopping execution at the point immediately after the call was made.

Executes the program until a previously set breakpoint or
watchpoint is triggered.

Executes the program until the entry point of the next function call is
reached, or until a breakpoint or watchpoint is triggered or an
exception is raised. This command is useful when executing from
any point in a function to the next function call.

Executes the program to the end, ignoring any breakpoints and
watchpoints that are set. If a Windows protection fault or other
exception occurs, the program breaks at the point of the violation.

(32-bit IDDE only) Stops the process currently being debugged, and
shows the location of the current execution point. Choosing Break
is equivalent to typing CTRL+ALT+SYSREQ in a debugging session with
the 16-bit IDDE.
Symantec C++ User’s Guide and Reference 23-3

23 Controlling and Configuring the Debugger

23-4 Symantec C++ U

Animate

Stop Animate

Settings
Executes the program until the next source-level statement is
reached, waits for a short delay (the animate delay), and again
executes the program until the next source-level statement is
reached. This command is equivalent to repeatedly executing the
Step Into command and waiting for a short delay. To stop the
animation mode, choose Stop Animate.

To set the animation delay time, choose the Animate Delay
command from the Settings submenu of the Debug menu (see the
section “Animate delay,” later in this chapter).

Stops the animation mode.

Brings up the Debugger Settings tabbed dialog box (Figure 23-2).
The tabs at the top allow you to switch between the General page,
the Exceptions page, and the Multiple EXE/DLL page.

General
Options on this page of the Debugger Settings dialog box control
the general debugger settings, such as the animation delay.

Figure 23-2 General page of the Debugger Settings dialog box
ser’s Guide and Reference

Commands on the Debug Menu
Flip screen
Specifies whether the IDDE flips control of the screen between the
debugger and the text-mode application window each time the
debugger executes some part of the application code.

When Flip Screen is turned on, the application gets control of the
screen each time it runs. When Flip Screen is turned off, the
debugger does not activate the application to bring it to the
foreground each time the debugger gives control to the application.

Animate delay
Opens the Animate Delay dialog box. This dialog box allows you
to specify the amount of time the debugger pauses between steps
while in animation mode. In animation mode, the debugger executes
the program step by step, pausing between steps by the amount of
time you have specified. (See the section “Animate” earlier in this
chapter for information on the Animate command.)

The Animate Delay dialog box lets you specify the delay in
milliseconds. For example, to pause for one second between steps,
specify 1000; the default is one-half second (500 milliseconds) delay.

Load symbols when editing
When this option is checked, the IDDE loads debug symbols from
the compiled executable or the DLL when the IDDE is in editing
mode. This gives you access to the data definitions in the Data
Window, as well as to line number information, while editing your
source code. For this option to work properly, you must build your
project with debug symbols enabled. Note that in editing mode some
of your operations in editing mode might take longer when this
option is on because IDDE has to load the debug symbols from your
compiled project.

Warning
No changes that you have made to the source files
since the last time you compiled your project are
reflected in the debug symbols shown while you
are editing. To update the debug symbols, you must
rebuild your project.
Symantec C++ User’s Guide and Reference 23-5

23 Controlling and Configuring the Debugger

23-6 Symantec C++ U
Debug application startup
Controls whether debugging starts at the beginning of a program or
at the WinMain() or main() entry point.

If you check this option, the debugger automatically sets a fixed
breakpoint at the main entry point and lets you trace through the
application’s startup code. If not, the debugger starts tracing from
WinMain() or main() onward.

Automatic switch to debug workspace
When you check this option, the debugger automatically debugs the
current project in the IDDE debugging workspace.

Automatic check of project dependencies
When you check this option, the debugger automatically checks the
project dependencies in the current project.

Show local data on start debugging
When you check this option, the debugger automatically displays
local data at the start of a debugging session. By default, the Data
window shows no data.

Enable C++ class display
Specifies whether the debugger displays C++ types in the Data/
Object window using the form class::object. When you do not check
this option, the debugger does not display C++ class names in the
Data/Object, Call, or Function windows.

Alternate class display
Reverses the order in which C++ information is displayed in the
Data/Object window to the form object::class. This command is
disabled unless you check the Enable C++ Class Display option.

Source search path
Specifies the search path for source files when debugging.

Working directory
Specifies the working directory for a debugging session.

Exceptions (32-bit IDDE only)
Options on this page let you control how the debugger responds to
the operating system when an exception occurs. This capability
helps you diagnose the cause of unforeseen, and possibly serious,
errors.
ser’s Guide and Reference

Commands on the Debug Menu
Exceptions presented on this page are NT exceptions, which are part
of the Structured Exception Handling mechanism of Win32. NT
exceptions comprise both hardware exceptions (such as access
violations, division by zero, or stack overflow) and software
exceptions (explicitly initiated either by Win32 APIs—HeapAlloc ,
for instance—or by your own code). However, C++ exceptions are
also accommodated on the Exceptions page. When you throw a C++
exception in a Win32 program, an NT exception is raised. The
exception code of the NT exception is the same value, unique to
Symantec C++, regardless of which C++ exception was thrown.

Note
For more information on Structured Exception
Handling, see Microsoft Win32 Programmer’s
Reference, Volume 2.

You can specify whether or not the debugger should stop on a
particular exception, or should stop only if you have not provided a
handler for it. (Uses of these options are discussed below.) The
Exceptions page is shown in Figure 23-3.

Figure 23-3 Exceptions page of the Debugger Settings dialog box
Symantec C++ User’s Guide and Reference 23-7

23 Controlling and Configuring the Debugger

23-8 Symantec C++ U
Number: Contains an exception code—a DWORD that uniquely
identifies an exception. Exception codes are displayed and entered
in the Number field as eight-digit hexadecimal numbers. Symbolic
constants for the exception codes of predefined NT exceptions can
be found in include\win32\winnt.h , located beneath the
directory in which you installed Symantec C++.

The layout of an exception code’s 32 bits is summarized in a
comment in the header file include\win32\winerror.h . If you
define your own exceptions, your exception code should adhere to
that format.

Name: Contains a descriptive string. No restrictions are placed on
the contents of this field.

Action: This drop-down list box contains two choices: Stop if not
Handled, and Always Stop. For both actions, the debugger stops
before the operating system itself responds to the exception.

• Stop if not handled: The debugger stops only if no
outstanding __try /__except or __try/catch block
will handle this exception.

• Always stop: The debugger stops, whether or not the
exception will be handled.

If you have written a handler for a particular exception, you can
choose to always stop on that exception to determine the point at
which it was raised. If an exception occurs that you have not
anticipated and for which you have not written a handler, either
Action will make the debugger stop. You can then diagnose the
cause of the exception by examining values of variables and the call
chain. Stop if not Handled can also be used to debug existing
exception handlers. It assists you in diagnosing situations where an
exception for which you have written a handler is being raised, but
which none of your handlers is catching.

Add: Adds a new exception to the list contained in the main pane,
as specified in the Number, Name, and Action fields. The Number
field must contain a value not used by any exception already in the
list.

Replace: Replaces information for the currently selected exception
in the main pane with the contents of the Number, Name, and
Action fields. This button is disabled if the Number field contains a
ser’s Guide and Reference

Commands on the Debug Menu
value different from the Number (exception code) of the selected
exception.

Remove: Deletes the currently selected exception from the list in the
main pane.

Reset: Undoes any changes to the built-in exception entries, without
altering any added exceptions. If any built-in exception entries have
been deleted, they are restored; all Actions and Names for built-in
exception entries are reset.

Multiple EXE/DLL debugging
Options on this page (Figure 23-4) allow you to specify how to
debug a project with multiple executables or dynamic link libraries.

Single executable: Debugs only the executable file. Does not
debug DLLs called by the executable.

All loading EXE/DLLs: Debugs the executable file and all DLLs or
EXEs called or spawned by the executable, including DLLs loaded at
run-time via explicit calls to the LoadLibrary API.

Figure 23-4 Multiple EXE/DLL page of the Debugger Settings
dialog box
Symantec C++ User’s Guide and Reference 23-9

23 Controlling and Configuring the Debugger

23-10 Symantec C++ U
Specific EXE/DLLs: Debugs the executable file and specific DLLs or
EXEs. Select those you want in the Specify Libraries and/or Modules
to Debug portion of the dialog box (enabled only when this radio
button is selected).

Calling program: For a DLL project, this textbox lets you specify
the application that calls the DLL.

Debug Toolbox Icons
The Debug toolbox contains icons that correspond to the commands
on the IDDE’s Debug menu. Figure 23-5 shows the command that
each icon invokes. For information on how to use these commands,
see the previous section.

Working with Breakpoints
This section explains how to set and use breakpoints with the
Symantec C++ debuggers. The debuggers support three types of
breakpoints:

• Unconditional
• Conditional
• Delayed

Figure 23-5 Debug toolbox icons

Toggle Breakpoint

Clear all Breakpoints

Step Over

Go until Breakpoint

Step Into

Restart Debugging

Set Breakpoint
ser’s Guide and Reference

Working with Breakpoints
Note
Breakpoints persist across debugging sessions; the
debuggers automatically save them to and restore
them from project configuration files.

Unconditional breakpoints
An unconditional breakpoint causes the debugger to stop execution
of the program when the breakpoint is encountered.

You set unconditional breakpoints using the Set Breakpoint or the
Set/Clear Breakpoint command (F9) in the Source, Assembly,
Function, Data/Object, or Breakpoint windows (as well as in the Spy
window when debugging a Windows application). After setting an
unconditional breakpoint, choose the Go until Breakpoint
command from the IDDE’s Debug menu to execute your program
until it reaches the breakpoint. When the breakpoint is reached, the
program halts and returns control to the debugger.

Note
While in debugging mode, you can also set an
unconditional breakpoint by double-clicking in the
left margin of the Source window at the line where
you want execution to stop.

Conditional and delayed breakpoints
Conditional breakpoints let the debugger:

• Stop the execution of the program only when a specified
condition evaluates to TRUE

• Stop the execution of the program only when it
encounters a breakpoint a specified number of times
(this is a delayed breakpoint)

• Evaluate an expression at a breakpoint

• Add code to the program without recompiling

You can set these kinds of breakpoints using the Set Conditional
Breakpoint command in the Source, Assembly, Function, or
Symantec C++ User’s Guide and Reference 23-11

23 Controlling and Configuring the Debugger

23-12 Symantec C++ U
Breakpoint windows. After you execute this command, the Set Code
Breakpoint dialog box shown in Figure 23-6 is displayed.

Note
When you choose Set Conditional Breakpoint in
the Breakpoint window, the Expression dialog
box is displayed first. Enter the address or
procedure name (for example) where you want to
set the breakpoint. The Set Code Breakpoint
dialog box is then displayed to allow you to specify
the kind of breakpoint to set.

The debugger automatically sets the Line, Address, and Procedure
fields, based on the location of the breakpoint.

Limit: Use this field to reach the breakpoint a specified number of
times before the debugger stops program execution. This sets a
delayed breakpoint.

Condition: Use this field when you want an expression to be
evaluated every time execution of the program reaches this
breakpoint. If the expression evaluates to TRUE (nonzero), the
debugger performs the action(s) specified in the Actions group. In
the Condition field, enter the expression to be evaluated.

Evaluate: Check this option if you want the debugger to evaluate
the next field’s expression whenever the program reaches this
breakpoint. If you use the Condition field, a breakpoint is triggered
only if the Condition evaluates to TRUE.

This field allows you to insert into your code a statement that you

Figure 23-6 Set Code Breakpoint dialog box
ser’s Guide and Reference

Working with Breakpoints
had neglected to include, or to test (in the debugger) that a
modification works before editing, compiling, and linking.

Note
Please refer to Appendix A, “Expression
Evaluation,” for more information about
expressions.

Break: Check this option if you want the debugger to stop execution
of the program whenever the program reaches this breakpoint. If
you use the Condition field, the debugger stops execution on
reaching this breakpoint only if the Condition evaluates to TRUE.

Examples of conditional breakpoints
The following are examples of conditional breakpoints:

Example 1
To execute your program to a point at which a certain condition is
met—such as stopping the execution at this breakpoint only if the
value of i+j is greater than 2000—execute a Set Conditional
Breakpoint command. Specify the expression i+j>2000 in the
Condition field.

The debugger executes your program and evaluates the condition
every time it executes the line on which the breakpoint is set. If the
condition specified does not evaluate to TRUE, the debugger
continues to execute your program. As soon as the value of i+j
exceeds 2000 when this line is executed, the debugger stops
executing the program and regains control.

Example 2
You omitted a statement from a line in which you should have called
the function AddRes from the module Results with the parameter
i as defined in the current function. You can use a conditional
breakpoint to direct the debugger to evaluate this call whenever it
encounters the breakpoint, and to do this before this line is executed
and without stopping execution.
Symantec C++ User’s Guide and Reference 23-13

23 Controlling and Configuring the Debugger

23-14 Symantec C++ U
Set a conditional breakpoint on the line and specify the Evaluate
option, as shown in Figure 23-7.

Every time the debugger reaches this line and i+j>2000 is TRUE, it
calls RESULTS.AddRes(i) . However, it does not stop executing
your program because you did not check the Break check box.

For information on breakpoint and watchpoint commands in
windows, see “The Command Window,” in Chapter 24, “Commands
Available in Debugging Mode.”

Working with Watchpoints
Watchpoints are vital to debugging. A watchpoint stops program
execution while the debugger either writes to or reads from a
location in memory. A variable or location in memory is often
improperly overwritten, causing the program to crash. Use
watchpoints to find these kinds of errors.

You can set watchpoints using the debugger. First, highlight either a
variable in the Data/Object window or a memory location in the
Memory window, then execute the Set Watchpoint command in
that window’s Watch menu. You need not specify an address for the
watchpoint. The debugger sets the watchpoint on the address of the
highlighted variable or on the highlighted location in memory.

Figure 23-7 Setting a breakpoint in your code
ser’s Guide and Reference

Working with Watchpoints
Symantec C++ uses the debugging capabilities of the 80386 and
higher microprocessors to provide full-speed execution of
watchpoints. These microprocessors relieve the debugger of the
need to check for the use of watchpoint locations when certain
instructions or functions are executed. Watchpoints implemented
with hardware assistance are called hardware watchpoints, in
contrast to the slower software watchpoints that debuggers must
implement in the absence of hardware support.

Setting watchpoints
When you set a watchpoint, the Set Watchpoint dialog box, shown
in Figure 23-8, prompts you for information. This dialog box displays
the address of the watchpoint and the size of the watched area in
bytes. It lets you set the type of access mode on which the
watchpoint should break. You can set the watchpoint to break on
read access, write access, or both.

You can set up to four 1-byte watchpoints. You can also set four
2-byte watchpoints if all the addresses in memory for which the
watchpoints are set are word aligned.

Use watchpoints on local variables with caution
If you set a watchpoint on a stack location such as a local variable,
the debugger displays a warning message on the status line:

Warning: Setting a watchpoint on stack
memory

You should clear any watchpoint set on a local variable before the
function to which it is local returns. If you do not, Windows itself
can subsequently access the location, thus triggering the watchpoint
and possibly causing Windows to crash.

Figure 23-8 Set Watchpoint dialog box
Symantec C++ User’s Guide and Reference 23-15

23 Controlling and Configuring the Debugger

23-16 Symantec C++ U
ser’s Guide and Reference

Commands Available in
Debugging Mode

24

This

The

chapter describes the commands available in debug windows.
 IDDE has several windows dedicated to debugging, each with a

different view of a program and a specific set of commands for
manipulating or examining the program during a debugging session.

The descriptions of the debug windows and their menu commands
follow, in alphabetical order. Each window’s commands are
discussed in the order in which they are listed in the menu bar.

Debug Windows and Commands
Using the debug windows, the Symantec C++ debugger gives you up
to 18 different kinds of views into a program’s state at run-time. You
open these windows from the Views toolbox (see Chapter 2,
“Introducing the IDDE”).

Because many of the commands associated with these views are
applicable only while a specific window is active, each debug
window has its own menu, located below the window’s title bar.

A window’s commands are available only while that window is
active. For example, because you would not set a breakpoint when
using the Call window, no breakpoint commands appear among the
Call window’s menus. Because setting breakpoints is a typical
source-level operation, several breakpoint commands are available
when the Source window is active.

Drag and drop
One of the IDDE’s unique features is the ability to drag and drop
updated information between debug windows, saving you the
trouble of choosing menu commands. This chapter covers all the
valid drag-and-drop operations among the IDDE’s debug windows.
Symantec C++ User’s Guide and Reference 24-1

24 Commands Available in Debugging Mode

24-2 Symantec C++ U
Accelerator keys
You can also execute most debug window commands through an
accelerator key combination (a function key or a Control key
combination). For example, you can choose the Start/Restart
Debugging command by pressing F4. A command’s description
provides the accelerator key combination (if any) that invokes it.

The Assembly Window
The Assembly window, shown in Figure 24-1, displays the
disassembled instructions of your program at a selected memory
location. The Assembly window’s menus (View, Bpt, and Others)
let you set and clear assembly-level breakpoints, set the disassembly
address, and determine the amount of symbolic information to
display.

The header line in the Assembly window (below the menu bar)
displays the module and function for the currently highlighted
assembly instruction. The first column of information in the window
area shows code addresses of the assembly instructions. If you
choose the Source command from the View menu to enable the
interleaved display of C++ source code, this column also shows the
line numbers of source-level statements.

Figure 24-1 Assembly window
ser’s Guide and Reference

The Assembly Window
If you execute the Step Into (F8) or Step Over (F10) commands
from the IDDE’s Debug menu while the Assembly window is active,
the debugger steps at the assembly level as opposed to at the source
level. For more information on controlling the execution of the
debugged program, refer to Chapter 23, “Controlling and
Configuring the Debugger.”

By default, the disassembly location is set to the address of the next
statement to be executed. However, by using the Set Disassembly
Address command in the Others menu, you can select another
address to disassemble.

The arrow, located to the left of the code address, indicates where
execution has currently stopped.

When Opcodes is checked in the View menu, the first column
contains source code addresses. The second column displays source-
level information and/or assembly instructions. The last column
displays opcodes for each assembly instruction if Source is checked
in the View menu.

The Assembly window has three menus (shown in Table 24-1) in the
debuggers: View, Bpt, and Others.

The menu items in the Assembly window are described next.

Table 24-1 Assembly window commands

Menu Menu Item Shortcut
View Symbols none

Source none
Opcodes none

Bpt Set/Clear Breakpoint Ctrl+S/Ctrl+F9
Set Conditional Breakpoint Ctrl+B
Clear All Breakpoints Ctrl+K

Others Set Disassembly Address Ctrl+A
Jump To Line Ctrl+J
Symantec C++ User’s Guide and Reference 24-3

24 Commands Available in Debugging Mode

24-4 Symantec C++ U

Symbols

Source

Opcodes

Set/Clear Breakpoint
View menu
This menu sets the display modes of the Assembly window. The
Assembly window displays assembly language code mixed with
symbols and source, as well as opcodes. A checkmark indicates the
current display mode.

Enables disassembled instructions mixed with symbolic information
such as variable names, function calls, and function entry points.

Enables disassembled instructions mixed with the corresponding
source code (if debugging information is available for the
disassembled module).

Toggles the display of assembly instruction opcodes.

Bpt menu
The Bpt Menu commands set and clear breakpoints at the assembly
language level in the program. See the section “Working with
Breakpoints,” in Chapter 23, “Controlling and Configuring the
Debugger,” for information on how to use breakpoints.

Sets an unconditional breakpoint at the selected assembly line. The
next time a Go command is executed (except the Go until End
command), execution of the program stops when it reaches this line.
If a breakpoint is already set on the selected assembly line, this
command clears that breakpoint.

Figure 24-2 Assembly window View menu

Figure 24-3 Assembly window Bpt menu
ser’s Guide and Reference

The Assembly Window

Set Conditional
Breakpoint

Clear All Breakpoints

Set Disassembly
Address
Note
To set a breakpoint, you can drag and drop from
the Assembly window to the Breakpoint window.
The presence of a breakpoint is indicated by a solid
black diamond to the left of the instruction’s
address. You can move the breakpoint to a different
line by dragging the black diamond to a different
line. Drop the diamond outside the window to clear
the breakpoint.

Opens the Set Code Breakpoint dialog box. You use this dialog
box to set a conditional breakpoint at the selected assembly line.

Clears all breakpoints set anywhere in the program.

Others menu
Using the Others menu, you can set a particular disassembly
location and change the execution location.

Sets the disassembly address. When this command is executed, the
debugger prompts you to enter an address. In the dialog box, enter a
hexadecimal address conforming to the language in use for the
expression evaluator. (See Appendix A, “Expression Evaluation.”)

For segment: offset addressing, use the following format:

0x nnnn:0x nnnn

where nnnn is a 4-digit hexadecimal number. You may omit the
segment address (and the colon) to specify an address in the same
segment as the one currently displayed. If you are running in the
32-bit flat memory model, specify the address in the following form:

0x nnnnnnnn

where nnnnnnnn is an 8-digit hexadecimal number.

Figure 24-4 Assembly window Others menu
Symantec C++ User’s Guide and Reference 24-5

24 Commands Available in Debugging Mode

24-6 Symantec C++ U

Jump to Line
 Changes the execution location of the current thread to the selected
assembly line. (The execution location, also known as the instruction
pointer, is stored in the CS:IP or EIP registers.) To execute the Jump
To Line command, select the assembly line where you want
execution to resume, then press Ctrl+J.

The Jump to Line command simulates a jump instruction, skipping
sections of code without executing them. When stepping through
the program, it continues executing from the new location.

Pop-up menu
You can access the Assembly window pop-up menu by pressing the
right mouse button anywhere in the window. The pop-up menu
provides quick access to three commands: Set/Clear Breakpoint,
Set Conditional Breakpoint, and Jump to Line. These commands
are described above.

The Breakpoint Window
The Breakpoint window, shown in Figure 24-6, displays status
information about all breakpoints set in the program. Breakpoint
window commands show the source location of a breakpoint and
clear, set, enable, or disable breakpoints.

Figure 24-5 Assembly window pop-up menu
ser’s Guide and Reference

The Breakpoint Window
When a breakpoint in the Source, Assembly, or Spy windows is set,
cleared, or triggered, the status of the breakpoint is displayed in this
window.

The Breakpoint window lists all breakpoints currently defined in the
program. You can view the different parameters of any breakpoint
and enable or disable the currently defined breakpoint.

The Breakpoint window displays the following information for every
line: Location, Address, Count/Limit, Act, Condition, and Action
Expr.

Location: Gives the name of the module in which the breakpoint is
set, followed by the function name and the line number in the
module.

Address: Provides the code address of the breakpoint setting.

Count/Limit: Displays the number of times the breakpoint is
triggered. If you specify a break Condition, the count is the number
of times the breakpoint has been reached with the specified
expression evaluating to TRUE. The limit is the number of times the
breakpoint must be reached for it to be triggered. This field is
displayed only if you have specified a limit.

Figure 24-6 Breakpoint window
Symantec C++ User’s Guide and Reference 24-7

24 Commands Available in Debugging Mode

24-8 Symantec C++ U
Act: Corresponds to the Action field in the Set Code Breakpoint
dialog box. It can contain either or both of the characters B or E, or
nothing. If B is present, execution breaks when it reaches this
breakpoint location. (If a break condition is specified, execution
breaks only if the Condition expression evaluates to TRUE when the
location is reached.) If E is present, the Action Expr. field (see
below) is evaluated every time the breakpoint is reached.

Condition: Shows the expression entered for a conditional
breakpoint. This expression is evaluated every time execution
reaches this breakpoint location. If the expression evaluates to TRUE
and the Action field contains B, execution stops.

Action Expr.: The expression entered for a conditional breakpoint
to be evaluated at each breakpoint hit. If you specify a Condition,
the action expression is evaluated only if the Condition expression
evaluates to TRUE. This expression is evaluated every time the
execution reaches this breakpoint location if the Action field contains
E. Evaluation does not stop execution of the program unless the
Action field also contains B.

You can set a breakpoint on any program statement in the Source
window or on any assembly instruction in the Assembly window,
with no limit to the number of breakpoints set.

The Breakpoint window has two menus, as shown in Table 24-2:
Show and Bpt.

The Breakpoint window menus are described next.

Table 24-2 Breakpoint window commands

Menu Menu Item Shortcut
Show Source Ctrl+S

Assembly Ctrl+A
Bpt Set Breakpoint F9

Set Conditional Breakpoint Ctrl+B
Clear Breakpoint Ctrl+C
Clear All Breakpoints Ctrl+K
Enable Breakpoint Ctrl+E
Disable Breakpoint Ctrl+D
ser’s Guide and Reference

The Breakpoint Window

Source

Assembly

Set Breakpoint
Show menu
The Show menu commands show the Source and Assembly
windows, positioned at the selected breakpoint.

Opens the Source window if it is not already open, makes it the
active window, and positions its contents to display the selected
breakpoint. Double-clicking on a source-code breakpoint in the
Breakpoint window or dragging and dropping from the Breakpoint
window to the Source window also executes this command.

Updates the Assembly window, if it is open, to display the assembly
location of the selected breakpoint. Dragging and dropping from the
Breakpoint window to the Assembly window also executes this
command.

Bpt menu
Bpt menu commands set breakpoints, clear individual breakpoints
or all breakpoints, and enable and disable breakpoints.

Displays an Expression dialog box. To set an unconditional
breakpoint, type the address and press Enter. You also can enter a
symbolic name, such as the name of a procedure. The new
breakpoint is added to the Breakpoint window. After executing any
Go command (except the Go until End command), execution of the
program stops when it reaches this line.

Figure 24-7 Breakpoint window Show menu

Figure 24-8 Breakpoint window Bpt menu
Symantec C++ User’s Guide and Reference 24-9

24 Commands Available in Debugging Mode

24-10 Symantec C++ U

Set Conditional
Breakpoint

Clear Breakpoint

Clear All Breakpoints

Enable Breakpoint

Disable Breakpoint
Displays an Expression dialog box. To set a conditional breakpoint,
type the address or a procedure name and press Enter. The
debugger displays the Set Code Breakpoint dialog box. In this
dialog box, you specify the condition of the breakpoint.

Clears the selected breakpoint.

Clears all breakpoints set in the program.

Enables the selected breakpoint (if currently disabled).

Disables the selected breakpoint (if currently enabled). Use this
command to temporarily disable a breakpoint that you can later
enable without having to set it again.

Pop-up Menu
The Breakpoint window pop-up menu allows you to access
frequently used commands quickly. You can bring up the pop-up
menu by pressing the right mouse button anywhere in the
Breakpoint window. The five commands in the pop-up menu appear
in other Breakpoint window menus and are described in detail in the
preceding sections.

The Call Window
The Call window, shown in Figure 24-10, lists the function calls a
program has made since it began running. The entries in this list,
often referred to as the call chain, are displayed in reverse
chronological order, from the last (most recent) call to the first
(initial) call.

Figure 24-9 Breakpoint window pop-menu
ser’s Guide and Reference

The Call Window
Each entry lists the name of the function called, followed by the
name of the module containing that function.

Use the Call window to display:

• The source-level and assembly-level execution location
of any function

• The local data of any function in the call chain

If no function calls have been made or all function calls have
returned, the Call window displays one of the two following status
messages:

No call chain (loading)

No call chain (terminating)

If the call chain is invalid, the Call window displays the following
message:

No call chain (error)

If no debugging information is available for a function in the call
chain, its entry in the Call window is displayed as:

PROCEDURE AT segment: offset

where segment: offset is the address of the function called. In the
32-bit flat memory model, addresses are displayed as 8-digit
hexadecimal numbers rather than in segment: offset format.

Figure 24-10 Call window
Symantec C++ User’s Guide and Reference 24-11

24 Commands Available in Debugging Mode

24-12 Symantec C++ U

Source
If no local symbols are available, the address is displayed as:

Unknown Procedure

The Call window’s local Show menu is shown in Table 24-3.

The menu items in the Call window are described in the following
section.

Show menu
Show menu commands update the position and information
displayed in the Source, Data, and Assembly windows. Use these
commands to view local data and the source- or assembly-level
execution position of the selected function in the Call window.

Opens the Source window (if not already open), makes it the active
window, and updates it to show the source-level location at which
the selected function is executing. Dragging and dropping from the
Call window to the Source window or double-clicking on the line in
the Call window also executes this command.

Table 24-3 Show Menu commands

Menu Menu Item Shortcut
Show Source Ctrl+S

Data Ctrl+D
Functions Ctrl+U
Assembly Ctrl+A
All Ctrl+L
Code Address none

Figure 24-11 Call window Show menu
ser’s Guide and Reference

The Call Window

Data

Functions

Assembly

All

Code Address
Updates the Data/Object window to show the local data and variable
information of the selected function. Dragging and dropping from
the Call window to the Data/Object window also executes this
command.

Updates the Function window to show the current entry in the call
chain.

Note
Dragging and dropping from the Call window to the
Function window shows all functions in the module
in which the selected entry in the Call window
resides.

Updates the Assembly window to show the assembly-level location
at which the selected function is executing. Dragging and dropping
from the Call window to the Assembly window also executes this
command.

Updates the Source, Data, and Assembly windows. You also can
double-click on a call chain entry to execute this command.

Displays the code address of the selected function in a message box.

Note
Dragging and dropping from the Call window to the
Memory window displays memory contents starting
at the instruction pointer address of the selected
entry in the Call window.
Symantec C++ User’s Guide and Reference 24-13

24 Commands Available in Debugging Mode

24-14 Symantec C++ U
Pop-up menu
The pop-up menu in the Call window has the same commands as
the Call window’s Show menu (see previous section). To access the
pop-up menu, press the right mouse button anywhere in the Call
window.

The Command Window
The Command window, shown in Figure 24-13, provides a
CodeView-like command-line interface to the debuggers. To pass a
command to the debugger from the Command window, type one of
the CodeView commands or functions in Table 24-4 at the prompt in
the Command window.

To see a list of the supported commands, type help at a Command
window prompt and press Enter.

Figure 24-12 Pop-up menu for Call window

Figure 24-13 Command window, showing its response
to the help command
ser’s Guide and Reference

The Command Window
Note
The Command window must be the active window
for the debugger to accept commands typed into it.

Table 24-4 Command window commands

Commands and
Function Keys

Action

BC * Clears all breakpoints set in the program

BD [number] Disables the specified breakpoint
(numbering of breakpoints starts at 1)

BE [number] Enables the specified breakpoint
(numbering of breakpoints starts at 1)

BL Opens the Breakpoint window

BP [.[line]][address] Sets an unconditional breakpoint on the
specified source line or on the specified
address given in the format appropriate
to the memory model

CLS Clears the command window screen

DA [address] Opens the Memory window to address
(displays in ASCII)

DB [address] Opens the Memory window (displays in
bytes)

DD [address] Opens the Memory window (displays in
double words)

DI [address] Opens the Memory window (displays in
integers)

DL [address] Opens the Memory window (displays in
long real numbers)

DS [address] Opens the Memory window (displays in
short real numbers)
Symantec C++ User’s Guide and Reference 24-15

24 Commands Available in Debugging Mode

24-16 Symantec C++ U
DT [address] Opens the Memory window (displays in
10-byte real numbers)

DU [address] Opens the Memory window (displays in
unsigned integers)

DW [address] Opens the Memory window (displays in
words)

G Executes a Go until Breakpoint
command

HELP Displays a list of supported commands
and functions

K Opens the Call window

L Restarts the program being debugged

M Opens the Memory window

P Executes a Step Over command

Q Closes the Command Line window

R Opens the Register window

SA Opens the Assembly window

SS Opens the Source window

T Executes a Step Into command

U[address] Opens the Assembly window to the
specified address

V.[line_number] Updates the Source window to the
specified line number

F2 Opens the Register window

Table 24-4 Command window commands (Continued)

Commands and
Function Keys

Action
ser’s Guide and Reference

The Console Window
The Console Window
The Console window displays the output of a text-mode program
that is being debugged. This is not a debugger window but rather an
independent window under the control of the program.

The Console window looks and behaves much like a DOS Window.
It cannot be closed during program execution; choose Stop
Debugging to terminate the application.

In the debugger, the IDDE’s Flip Screen option affects the Console
window. (This option is described in Chapter 23, “Controlling and
Configuring the Debugger.”) When the debugger executes the text-
mode program, the output is displayed in the foreground by default.
Choosing Flip Screen allows you to control whether or not the
debugger displays the Console window while it executes your
program.

Note
Do not turn off the Flip Screen option when
working in text mode unless the program you are
working with has no output.

The Console window has no local menus.

F3 Switches between the Source and
Assembly windows

F5 Executes a Go Until Breakpoint
command

F7 Executes a Find Next command

F8 Executes a Step Into command

F9 Sets or clears a breakpoint

F10 Executes a Step Over command

Table 24-4 Command window commands (Continued)

Commands and
Function Keys

Action
Symantec C++ User’s Guide and Reference 24-17

24 Commands Available in Debugging Mode

24-18 Symantec C++ U
The Data/Object Window
The Data/Object window, shown in Figure 24-14, displays the local
variables, global (including static) variables, and objects in the
program. The header line indicates the function or module for the
local or global variables that are displayed. Each line in the Data/
Object window shows a different variable (or element of a variable),
together with its name, value, and type.

This view makes it easy to examine the elements of structures and
arrays, as well as the contents of pointers and sets. Use the Data/
Object window to set watchpoints on data or to modify data. You
can view a graphical representation of any data structure using the
Graphic Data window, described later in this chapter.

The Module and Call windows can update the Data/Object window
to display global and local data, respectively. After the variable
information is displayed in the Data/Object window, you can
examine and modify it.

The Data/Object window supports the display of C++ data type
names either in the form member::class or in the form class::member.
To control how these data type names are displayed, use the
Alternate Class Display option in the Debugger Settings dialog box
described in Chapter 23, “Controlling and Configuring the
Debugger.”

Figure 24-14 Data/Object window
ser’s Guide and Reference

The Data/Object Window
If you didn’t select a module or function to show data for, the
Data/Object window displays the message:

No data context selected

If the debugger attempts to show local data for a function that does
not have any local data, the Data/Object window displays the global
data of the module the function resides in. If there is no local or
global data available to view, the Data/Object window displays the
message:

No global data

Before execution has started or after it has terminated, the Data/
Object window displays the message:

No local data (no call chain)

Table 24-5 shows the Data/Object window commands.

Table 24-5 Data/Object window commands

Menu Menu Item Shortcut
Find In Current Scope none

In All Modules Ctrl+F
Next F3

View Child/Contents Ctrl+C
Parent Ctrl+P
Right (Next Element) Ctrl+R
Left (Prev. Element) Ctrl+L
Specific Index Ctrl+I
Variable Level Ctrl+V
Local/Global Data Ctrl+X
Methods in Class none

Show Graphic Data Structure Ctrl+G
Memory Ctrl+E
Source of Method none
Address Ctrl+A

Expr Evaluate Expression none
Convert Decimal to Hex none
Convert Hex to Decimal none

Bpt Set/Clear Breakpoint on Method F9
Set Conditional Breakpoint on Method Ctrl+B
Clear All Breakpoints none

Watch Set Watchpoint Ctrl+W
Symantec C++ User’s Guide and Reference 24-19

24 Commands Available in Debugging Mode

24-20 Symantec C++ U

In Current Scope

In All Modules
The menu items in the Data/Object window are described below.

Find menu
Find menu commands locate variables in the current scope and in
all modules.

Displays a dialog box that allows you to enter the name of the
variable to find. Enter the name of the variable (or field) for which
you want to search, and press Enter. The standard wildcards
(* and ?) are supported in the name specification; case is significant.
The debugger searches in the current scope for the variable and
selects the line with that variable in the Data/Object window. If there
is more than one local variable with the same name, you can
continue the search using Next.

Displays a dialog box that allows you to enter the name of the
variable to find. Enter the name of the global variable (or field) you
want to search for and press Enter. The standard wildcards
(* and ?) are supported in the name specification; case is
significant. The debugger searches all the modules for the variable
and selects that line in the Data/Object window. If there is more than
one global variable with the same name, continue the search using
Next.

Clear Watchpoint none
Clear All Watchpoints Ctrl+K

ShowAs Show as Original Type none
Show Value in Hex Ctrl+H
Show Value with Type Ctrl+T
Show Pointer as Array none
Examine String Pointer Ctrl+S
Show Char Ptrs as Strings none

Modify N/A
Inspect! N/A
New! N/A

Figure 24-15 Data/Object window Find menu

Table 24-5 Data/Object window commands (Continued)

Menu Menu Item Shortcut
ser’s Guide and Reference

The Data/Object Window

Next

Child/Contents
Repeats the last search executed using a Find command.

View menu
Commands in the View menu let you navigate within data structures
and arrays, toggle between displaying local and global data, and
toggle the inclusion of methods in the display.

Displays the next level of the data structure beneath the selected
data structure, allowing you to navigate down through arrays,
structures, and pointers to view their elements. You may also
double-click on a data item to execute the Child/Contents
command on it. This command operates in the following manner:

• If the selected item is an array, the Data/Object window
displays the list of elements in the array, one element per
line. The name of each element is its index value in the
array. Examine and modify an array element just as you
would any other variable.

• If the selected item is an instance of a class, the
Data/Object window displays its data members and their
values.

• If the selected item is a record or structure, the
Data/Object window displays the names and values of
the structure elements.

• If the selected item is a pointer, the Data/Object window
displays the object it points to.

Figure 24-16 Data/Object window View menu
Symantec C++ User’s Guide and Reference 24-21

24 Commands Available in Debugging Mode

24-22 Symantec C++ U

Parent

Right (Next Element)

Left (Prev. Element)

Specific Index
• If the selected item is a function, module, or method, the
Data/Object window displays the message:

This data is not structured

• If the selected item is a nested block, the Data/Object
window displays the variables declared in the nested
local scope.

Note
For faster compilation, Symantec C++ can optionally
compile C++ modules without class debugging
information. However, you cannot view objects
(instances of classes) or structures in such modules
unless you recompile with class debugging
information.

Displays the parent data structure of the current data structure. This
command lets you move up a level in the data structure you
previously moved down in with the Child/Contents command.
When the Parent command is executed, the Data/Object window
displays the structure one level up from the current data structure.

Displays the next index of the current array. If you use the
Child/Contents command to view the elements of an array, use the
Right (Next Element) command to quickly select the next index in
the array.

Displays the previous index of the current array. If you used the
Child/Contents command to view the elements of an array, use this
command to quickly select the previous index in the array.

Specifies a particular index to view in the array. If you used the
Child/Contents command to view the elements of an array, this
command lets you quickly view the contents of a specific index in
the array.

When this command is executed, the debugger prompts you to enter
an expression to be evaluated. The result of the evaluation becomes
the index of the newly displayed or selected array element.
ser’s Guide and Reference

The Data/Object Window

Variable Level

Local/Global Data

Methods in Class
Note
Use any one of the commands Right (Next
Element), Left (Prev. Element), or Specific
Index when you are viewing the fields of an array
element. The Data/Object window displays the
fields of the array with the new index.

For example, if there is an array of records and the
record fields of the first element of the array are
displayed, you can use the Right (Next Element)
command to directly view the record fields of the
second element of the array. This is faster than
executing the Parent command, changing the
selection to the next index, and executing the
Child/Contents command.

Returns to the top nesting level (the variable level) of the data
display. Use this command if you chose the Child/Contents
command to descend into a data structure and want to return to the
top variable level without repeatedly using the Parent command.

Toggles the data view between the current function’s local variables
and the global variables of the current module. The command
toggles between the local data of a function and the global data of
the module that contains the function.

Toggles on and off the option to view the methods in C++ objects.
Use this command if you don’t want to view methods mixed with
data items.
Symantec C++ User’s Guide and Reference 24-23

24 Commands Available in Debugging Mode

24-24 Symantec C++ U

Graphic Data Structure

Memory

Source of Method

Address
Show menu
The Show menu is used to update the Graphic Data, Memory, and
Source windows to reflect the selected item in the Data/Object
window. It also is used to display the location—an address or a CPU
register—of the currently selected item.

Select this menu item to display a graphic data representation of the
selected variable. A drawing of the selected data structure is
displayed in the Graphic Data window. This command provides a
visual overview of your structure, in addition to the data browsing
capabilities provided by the Data/Object window. For information
about the Graphic Data display, see the section “The Graphic Data
Window,” later in this chapter.

Dragging and dropping from the Data/Object window to the
Graphic Data window also executes this command.

Note
The Graphic Data Structure command is disabled
if there are not enough Windows resources
available to generate a view for the Graphic Data
window.

Updates the Memory window to display the memory location of the
variable selected in the Data/Object window. Dragging and
dropping from the Data/Object window to the Memory window also
executes this command.

Updates the Source window to the location of the code for the
method highlighted in the Data/Object window.

Displays the memory location of the selected variable at the left of
the menu bar. If the variable is a register variable, this command
displays the register(s) it is contained in on the status line.

Figure 24-17 Data/Object window Show menu
ser’s Guide and Reference

The Data/Object Window

Evaluate Expression

Convert Decimal to Hex

Convert Hex to Decimal

Set/Clear Breakpoint on
Method
Expr menu
Commands in the Expr menu let you evaluate expressions, change
the value of a variable, and convert values between decimal and
hexadecimal.

Opens an Expression dialog box. In the text field, enter the
expression you want to evaluate. Use this command to modify a
variable.

See Appendix A, “Expression Evaluation,” for more information on
entering and evaluating expressions.

Converts a decimal value to hexadecimal and displays the result on
the status line.

Converts a hexadecimal value to decimal, and displays the result on
the status line.

Bpt menu
The Bpt menu contains commands to set and clear breakpoints on
methods in the Data/Object window. Refer to Chapter 23,
“Controlling and Configuring the Debugger,” for details on the types
of breakpoints that can be set.

Sets a breakpoint on the method currently selected in the
Data/Object window or clears a breakpoint that is currently set in
the selected method. Dragging and dropping from the Data/Object
window to the Breakpoint window also executes this command.

Figure 24-18 Data/Object window Expr menu

Figure 24-19 Data/Object window Bpt menu
Symantec C++ User’s Guide and Reference 24-25

24 Commands Available in Debugging Mode

24-26 Symantec C++ U

Set Conditional
Breakpoint on Method

Clear All Breakpoints

Set Watchpoint

Clear Watchpoint

Clear All Watchpoints
Sets a conditional breakpoint in the method currently highlighted in
the Data/Object window.

Clears all breakpoints in the program.

Watch menu
Commands in the Watch menu are used to control data watchpoints
in the program. When a watchpoint is set on a variable, a change in
the variable’s value or the implementation of a read access to the
variable causes the program to stop near the point at which the
variable was accessed. This feature helps you locate data
modifications or accesses that may be incorrect. Refer to the section
“Working with Watchpoints,” in Chapter 23, “Controlling and
Configuring the Debugger,” for more information about watchpoints.

Sets a data watchpoint on the selected variable. The debugger
displays a Set Watchpoint dialog box. This dialog box allows you
to choose whether to trigger the watchpoint on a read access or on a
write access. When executing a Go command, the debugger stops
execution of the program as soon as the program accesses the
specified variable.

Dragging and dropping from the Data/Object window to the
Watchpoint window also executes this command.

Clears a watchpoint set on a selected variable. This command
reverses the effect of the Set Watchpoint command.

Clear all watchpoints set in the program.

Figure 24-20 Data/Object window Watch menu
ser’s Guide and Reference

The Data/Object Window

Show as Original Type

Show Value in Hex

Show Value with Type

Show Pointer as Array

Examine String Pointer
ShowAs Menu
ShowAs menu commands let you change the data type that a
variable is displayed as.

Displays a variable using its actual type after it has been typecast to
another type. Executing Show Value in Hex on an already cast
variable has the same effect.

Toggles the view between the originally declared type of the
variable and its hexadecimal display.

Changes a variable from its original type to another named type.

Note
The / symbol to the left of the variable name
indicates that the variable is cast to a different type.

When executing Show Value with Type, the debugger prompts you
to enter the type name. If the type entered is not a predefined type,
the debugger prompts you to enter the module in which that type is
defined. The selected variable is then cast to that type. To reset the
variable to its original type, choose Show as Original Type.

Displays the data pointed to as an array. This command allows you
to browse dynamically allocated arrays by displaying the data
pointed to as an array.

Displays the string that the selected character pointer points to in a
message box. To view the string, select the pointer and execute this
command.

Figure 24-21 Data/Object window ShowAs menu
Symantec C++ User’s Guide and Reference 24-27

24 Commands Available in Debugging Mode

24-28 Symantec C++ U

Show Char Ptrs as
Strings
Updates the Data/Object window to display the character strings to
which character pointers point.

Modify!
Modifies the contents of the selected variable or field. Select the
variable or field you want to modify in the Data/Object window,
then execute this command. The debugger prompts you to enter an
expression to modify the variable.

The expression must evaluate to a value of the same size as the
variable, but not necessarily to the same type. Refer to Appendix A,
“Expression Evaluation,” for more information.

Inspect!
Creates a new line for the selected variable in the Inspector window.
Dragging and dropping a variable from the Data/Object window to
the Inspector window has the same effect.

New!
Creates a new, empty Data/Object window.

Pop-up menu
The Data/Object window pop-up menu provides quick access to
frequently used menu choices in the Data/Object window local
menu. The View, Show, ShowAs, Breakpoint, and Watch
commands access submenus that have some of the commands
available from the similarly named menus on the Data/Object
window menu bar. The Modify and Inspect commands function
the same way as do the similarly named commands in the local
menu.

Figure 24-22 Pop-up menu for the Data/Object window
ser’s Guide and Reference

The Function Window
The Function Window
The Function window, shown in Figure 24-23, displays the functions
in your program, the names of the modules in which they are
defined, their addresses, and their memory model type (near or far—
applicable only in 16-bit programs). Commands let you find
functions and modules, set breakpoints on functions, and examine
the local and global data of any function in the program.

The Function window shows information for one function per line.
The first column contains the breakpoint indicator. If a breakpoint
has been set on or in the function, the first column contains a solid
black diamond. If execution has stopped at a breakpoint in the
function, the first column contains the outline of a diamond with a
line through it.

The next column contains the execution indicator. If the program
has executed into the function, the column contains a right arrow.

Next is the name of the function, followed by the name of the
module in which the function is defined, the address of the function,
and—if a 16-bit program is being debugged—the memory model
type (near or far).

Figure 24-23 Function window
Symantec C++ User’s Guide and Reference 24-29

24 Commands Available in Debugging Mode

24-30 Symantec C++ U

Function
The Function window has four local menus: Find, Show, Bpt, and
View, listed in Table 24-6.

The menu items in the Function window are described below.

Find menu
Find menu commands locate functions and modules in the Function
window.

Locates a specific function in the Function window. When the
command is executed, the debugger prompts you to enter the name
of the function you want to find. The standard wildcards (* and ?)
are supported in the name specification; case is significant. If the
function is found, its entry is selected.

Table 24-6 Function window commands

Menu Menu Item Shortcut
Find Function Ctrl+F

Module Ctrl+M
Next F3

Show Source Ctrl+S
Local Data Ctrl+D
Global Data Ctrl+G
Assembly Ctrl+A
All Ctrl+L

Bpt Set/Clear Breakpoint F9
Set Conditional Breakpoint Ctrl+B
Clear All Breakpoints Ctrl+K
Set On All Functions none
Clear From All Functions none

View Current Module none
All Modules none

Figure 24-24 Function window Find menu
ser’s Guide and Reference

The Function Window

Module

Next

Source

Local Data

Global Data

Assembly
Searches for a module in the Function window. When the command
is executed, the debugger prompts you to enter the name of the
module you want to find. The standard wildcards (* and ?) are
supported in the name specification. This command is not case
sensitive. If the module is found, its entry is selected.

Repeats the last search executed, using a Find command.

Show menu
The Show menu contains commands that update the Source, Data,
and Assembly windows for any function in the Function window.

Updates the Source window and displays the selected function’s
source code. It is used to view the source code of any function in the
program. If the debugger cannot locate the source file, a dialog box
prompts you to enter its filename (including a path, if necessary).
Dragging and dropping from the Function window to the Source
window also executes this command.

Updates the Data/Object window and displays the selected
function’s local data. If the selected function is not found in the call
chain (and therefore cannot have any local data), the debugger
displays an error message. Dragging and dropping from the Function
window to the Data/Object window also executes this command.

Updates the Data/Object window and shows the global data
declared in the selected function’s module. Dragging and dropping a
module from the Project window to the Data/Object window also
executes this command.

Updates the Assembly window to the code address of the function.
Dragging and dropping from the Function window to the Assembly
window also executes this command.

Figure 24-25 Function window Show menu
Symantec C++ User’s Guide and Reference 24-31

24 Commands Available in Debugging Mode

24-32 Symantec C++ U

All

Set/Clear Breakpoint

Set Conditional
Breakpoint

Clear All Breakpoints

Set On All Functions

Clear From All
Functions
Note
You can drag and drop from the Function window
to the Memory window to show the starting address
in which the code for the selected function resides.

Updates the Source, Data, and Assembly windows. You can also
execute this command by double-clicking on a function entry.

Bpt menu
The Bpt menu contains commands to set and clear breakpoints in
the Function window. Refer to Chapter 23, “Controlling and
Configuring the Debugger,” for details on the types of breakpoints
that can be set.

Sets an unconditional breakpoint at the entry point of the selected
function. The next time any Go command is executed (except for
the Go until End command), execution of the program stops when
it reaches this line. If a breakpoint is already set on the selected
function, this command clears it.

Dragging and dropping from the Function window to the Breakpoint
window also executes this command.

Displays the Set Code Breakpoint dialog box, which you use to set
a conditional breakpoint at the entry point of the selected function.

Clears all breakpoints set in your program.

Sets breakpoints on all functions currently being viewed in the
Function window.

Clears any breakpoints set in the Function window.

Figure 24-26 Function window Bpt menu
ser’s Guide and Reference

The Function Window

Current Module

All Modules
View menu
The View menu contains commands for functions that you choose to
include in the Function window. A checkmark indicates the currently
selected mode.

Causes the Function window to redraw and display only those
functions belonging to the module you dropped into the Function
window.

Selects all functions contained in the program and displays them in
the Function window.

Pop-up menu
The pop-up menu of the Function window provides easy access to
commands also found in the Show and Bpt menus, described
earlier.

Figure 24-27 Function window View menu

Figure 24-28 Function window pop-up menu
Symantec C++ User’s Guide and Reference 24-33

24 Commands Available in Debugging Mode

24-34 Symantec C++ U
The Graphic Data Window
The Graphic Data window, shown in Figure 24-29, is a sophisticated
tool that lets you display a graph of a simple or complex data
structure. The structure can be referenced by any variable defined in
your program. The menu commands in the Graphic Data window let
you view information and zoom in on specific parts of the graph.

Data structures are displayed as boxes connected by lines or arrows.
Each box represents a particular data object, each line a relationship
between data objects, and each arrow a pointer relationship between
data objects.

Data objects are items in the structure that can have either a value or
a meaning. Any of the following variables can be data objects:
simple types, pointers, arrays, structures, or objects (class instances).

Figure 24-29 Graphic Data window
ser’s Guide and Reference

The Graphic Data Window
To display a graph, select a variable in the Data/Object window and
choose the Graphic Data Structure command from the Show
menu. This variable becomes the starting (or root) data object of the
graph. When you open the Graphic Data window, the root data
object is displayed.

The graph generated from the root data object can be either simple
or complex. Simple graphs are created when the form of the
structure is a singly linked list. Complex graphs are created when the
form of the structure is a tree (with multiple pointers of the same
type). If the graph cannot be displayed as a simple graph, it is
displayed as a complex graph.

Simple graphs
Simple graphs (and simple portions of graphs) can be fully displayed
in the Graphic Data window. An overview of the entire graph is
visible after it is created. You can zoom in and scroll through the
graph to examine the information in more detail. A simple graph
may contain nodes that hide subgraphs, as in the case of a node
representing a tree with multiple pointers of the same type. Use the
Show Subgraph command—that is, the Subgraph command in the
Show menu—to view the subgraph.

Complex graphs
Complex graphs are displayed initially in the Graphic Data window
as a box representing the root data object of a subgraph. An object
represents a complex subgraph when the variable name in the box is
surrounded by vertical bars. To view the subgraph of a complex
graph object, choose the Show Subgraph command.

When viewing a complex subgraph, each object in the complex
structure is displayed. You can zoom in and scroll through the graph
to examine the information more closely.

If you are viewing a complex subgraph and want to view its parent
graph, choose the Show Parent command.

Creating a graph might take a few seconds, depending on the speed
of your machine, the amount of memory available, and the
complexity of the data structure. The menu commands of the
Graphic Data window are not available until a graph is displayed in
the Graphic Data window.
Symantec C++ User’s Guide and Reference 24-35

24 Commands Available in Debugging Mode

24-36 Symantec C++ U

Information

Subgraph
Each object in the graph displays information about itself, such as its
name or value. To obtain more information about an object, use the
Show Information command. Note that if an object is too small to
display its information, you must zoom in on it before the
information is displayed.

The Graphic Data window has three local menus: Show, Zoom, and
Others.

The menu items in the Graphic Data window are described below.

Show menu
The Show menu displays a complex subgraph, additional
information about an object, and the parent graph of a complex
subgraph.

Note
To use the following commands on a particular
object, first click on the object, then execute the
command.

Displays in a message box the object name and its type information
or value for the selected object. Select the object by clicking on it.

Causes the Graphic Data window to display the associated subgraph
of the object when a complex subgraph object is selected.

Table 24-7 Graphic Data Window commands

Menu Menu Item Shortcut
Show Information Ctrl+A

Subgraph Ctrl+S
Parent Ctrl+P

Zoom Zoom In Ctrl+I
Zoom Out Ctrl+U
Zoom Reset Ctrl+R

Others Clear Graph Ctrl+C

Figure 24-30 Graphic Data window Show menu
ser’s Guide and Reference

The Graphic Data Window

Parent

Zoom In

Zoom Out

Zoom Reset

Clear Graph
Displays the parent graph of the current subgraph. When viewing a
complex subgraph, this command lets you return to the parent
graph.

Zoom menu
Zoom menu commands control the view magnification of the
selected object.

Zooms in on the selected object. Select the object by clicking on it,
then execute the command. The window redraws, enlarging the
selected object. Double-clicking on an object also zooms in.

Zooms out from the selected object. Select the object by clicking on
it, then execute this command. You can also double-click the right
mouse button on an object to zoom out.

Resets the display of the graph to its initial state. Use this command
if you have zoomed or scrolled the display of the graph and want to
restore the graph to its original state.

Others
The Others menu contains the Clear Graph command.

Clears the current graph from the Graphic Data window. In addition,
this command frees the memory used by the graphical
representation of the current data structure you are viewing. If the
debugger is running low on memory, this command frees up the
memory used by the Graphic Data window.

Figure 24-31 Graphic Data window Zoom menu

Figure 24-32 Graphic Data window Others menu
Symantec C++ User’s Guide and Reference 24-37

24 Commands Available in Debugging Mode

24-38 Symantec C++ U
The Inspector Window
The Inspector window, shown in Figure 24-33, is similar in function
to the Data/Object window, allowing you to display and modify
variables and objects. Unlike the Data/Object window, it can display
any mix of local and global variables. It can also display the same
variable more than once, a useful feature if you want to view the
same variable in different ways—for example, in hexadecimal, as an
int , and as a pointer—all at the same time. With the Inspector
window you can select several local variables from a function, or
several global variables, and view them all simultaneously.

Initially the Inspector window is empty. You add variables to it by
dragging them from the Data/Object window, or by selecting a
variable in the Data/Object window. then selecting Inspect! from
the Data/Object window’s local menu. You can also add multiple
instances of the same variable to the Inspector window. To delete an
instance of a variable from the Inspector window, select Delete!
from the Inspector window’s menu.

Figure 24-33 Inspector window
ser’s Guide and Reference

The Inspector Window
Table 24-8 shows the Inspector window commands.

The menu items in the Inspector window are described in the next
section.

Find Menu
Commands in the Find menu let you search for all instances of a
variable in the Inspector window.

Table 24-8 Inspector window commands

Menu Menu Item Shortcut
Find Entry none

Next F3
View Child/Contents Ctrl+C

Parent Ctrl+P
Right (Next element) Ctrl+R
Left (Prev. element) Ctrl+L
Specific Index Ctrl+I
Variable Level Ctrl+V

Show Graphic Data Structure Ctrl+G
Memory Ctrl+E
Source of Method none
Address Ctrl+A

ShowAs Show Pointer as Array none
Show Value in Hex Ctrl+H
Show Value with Type Ctrl+T
Show as Original Type none
Examine String Pointer Ctrl+S
Show Char Ptrs as Strings none

Watch Set Watchpoint Ctrl+W
Clear Watchpoint none
Clear All Watchpoints Ctrl+K

Modify! Alt+M
Delete! Alt+D

Figure 24-34 Inspector window Find menu
Symantec C++ User’s Guide and Reference 24-39

24 Commands Available in Debugging Mode

24-40 Symantec C++ U

Entry

Next

Child/Contents
Displays a dialog box that allows you to enter the name of a variable
to find. Enter the name of the variable (or field) for which you want
to search, and press Enter. The standard wildcards (* and ?) are
supported in the name specification; case is significant. The
debugger searches in the current scope for the variable and selects
that line in the Inspector window. If there is more than one local
variable with the same name, continue the search by using Next.

Repeats the last search executed using a Find command.

View Menu
Commands in the View menu let you navigate within data structures
and arrays.

Displays the level of the data structure one level down from the
selected data structure. This command lets you navigate down
through arrays, structures, and pointers to view their elements. You
can also double-click on a data item to execute the Child/Contents
command on it. This command operates in the following manner:

• If the selected item is an array, the Inspector window
displays the list of elements of the array, one element per
line. The name of each element is its index value in the
array. You can examine and modify an array element just
as you would any other variable.

• If the selected item is an instance of a class, the Inspector
window displays its data members and their values.

• If the selected item is a record or structure, the Inspector
window displays the names and values of the structure
elements.

Figure 24-35 Inspector window View menu
ser’s Guide and Reference

The Inspector Window

Parent

Right (Next Element)

Left (Prev. Element)

Specific Index
• If the selected item is a pointer, the Inspector window
displays the object it points to.

• If the selected item is a function, module, or method, the
Inspector window displays the message:

This data is not structured

• If the selected item is a nested block, the Inspector
window displays the variables declared in the nested
local scope.

Note
For faster compilation, Symantec C++ can optionally
compile C++ modules without class debugging
information. However, you cannot view objects or
structures in such modules unless you recompile
with class debugging information.

Displays the parent data structure of the current data structure. This
command lets you move up a level in a data structure that you
previously moved down in with the Child/Contents command.
When the Parent command is executed, the Inspector window
displays the structure one level up from the current data structure.

Displays the next index of the current array. If you used the
Child/Contents command to view the elements of an array, use the
Right (Next Element) command to quickly select the next index in
the array.

Displays the previous index of the current array. If you used the
Child/Contents command to view the elements of an array, use this
command to quickly select the previous index in the array.

Specifies a particular index to view in the array. If you used the
Child/Contents command to view the elements of an array, use this
command to quickly view the contents of a specific index in the
array.

When this command is executed, the debugger prompts you to enter
an expression to be evaluated. The result of the evaluation becomes
the index of the newly displayed array element.
Symantec C++ User’s Guide and Reference 24-41

24 Commands Available in Debugging Mode

24-42 Symantec C++ U

Variable Level

Graphic Data Structure
Note
Use any one of the commands Right (Next
Element), Left (Prev. Element), or Specific
Index when you are viewing the fields of an array
element. The Inspector window displays the fields
of the array with the new index.

For example, if there is an array of records and the
record fields of the first element of the array are
displayed, use the Right (Next Element) command
to directly view the record fields of the second
element of the array. This is faster than executing
the Parent command, changing the selection to the
next index, and executing the Child/Contents
command.

Returns to the top nesting level (the variable level) of the data
display. Use this command if you chose the Child/Contents
command to descend into a data structure and want to return to the
top variable level without repeatedly using the Parent command.

Show Menu
The Show menu is used to update the Graphic Data Memory and
Source windows to reflect the selected item in the Inspector
window. It is also used to display the location of an address or a
CPU register of the currently selected item.

Displays a graphic data representation of the selected variable. A
drawing of the selected data structure is displayed in the Graphic
Data window. This command provides a visual overview of your
structure in addition to the data browsing capabilities provided by
the Inspector window. For information about the Graphic Data
display, see the section “The Graphic Data Window” later in this
chapter.

Figure 24-36 Inspector window Show menu
ser’s Guide and Reference

The Inspector Window

Memory

Source of Method

Address

Show Pointer as Array
Dragging and dropping from the Inspector window to the Graphic
Data window also executes this command.

Note
The Graphic Data Structure command is disabled
if there are not enough Windows resources
available to generate a view for the Graphic Data
window.

Updates the Memory window to display the memory location of the
variable selected in the Inspector window. Dragging and dropping
from the Inspector window to the Memory window also executes
this command.

Updates the Source window to the location of the code for the
method highlighted in the Inspector window.

Displays in a message box the memory location of the variable on
the selected line. If the variable is a register variable, this command
displays the register(s) it is contained in on the status line.

ShowAs Menu
The commands in this menu change the way the Inspector window
displays variables.

Displays the data pointed to by the variable on the selected line as
an array. This command allows you to browse dynamically allocated
arrays by displaying the data pointed to as an array.

Figure 24-37 Inspector window ShowAs menu
Symantec C++ User’s Guide and Reference 24-43

24 Commands Available in Debugging Mode

24-44 Symantec C++ U

Show Value in Hex

Show Value with Type

Show as Original Type

Examine String Pointer

Show Char Ptrs as
Strings
Changes to hexadecimal the display type of a variable on the
selected line. The command toggles the view between the originally
declared type of the variable and its hexadecimal display. If the
Inspector window displays the same variable more than once, only
one instance of this variable is affected.

Changes a variable from its original type to another named type. If
the Inspector window displays the same variable more than once,
only the selected instance of this variable is affected.

Note
The / symbol to the left of the variable name
indicates that the variable is cast to a different type.

When executing Show Value with Type, the debugger prompts you
to enter the type name. The variable on the selected line is then cast
to that type. To reset the variable to its original type, choose Show
as Original Type from the ShowAs menu.

Displays a variable using its actual type after it has been typecast to
another type. Executing Show Value in Hex on an already cast
variable has the same effect.

Displays the string that the selected character pointer points to in a
message box. To view the string, select a line with a pointer variable
and execute this command.

Updates the Inspector window to display the character strings to
which the character pointers point.
ser’s Guide and Reference

The Inspector Window

Set Watchpoint

Clear Watchpoint

Clear all Watchpoints
Watch menu
Commands in the Watch menu are used to control data watchpoints
in the program. When a watchpoint is set on a variable, a change in
the variable’s value or in the implementation of a read access to the
variable causes the program to stop near the point at which the
variable was accessed. This feature helps locate data modifications or
accesses that may be incorrect. Refer to Chapter 23, “Controlling and
Configuring the Debugger,” for more information about watchpoints.

Sets a data watchpoint on the selected variable and causes the
debugger to display a Set Watchpoint dialog box. This dialog box
allows you choose whether to trigger the watchpoint on a read
access or on a write access. When executing a Go command, the
debugger stops execution of the program as soon as the program
accesses the specified variable.

Dragging and dropping from the Inspector window to the
Watchpoint window also executes this command.

Clears a watchpoint set on a selected variable. This command
reverses the effect of the Set Watchpoint command.

Clears all watchpoints set in the program.

Modify!
Modifies the contents of the selected variable or field. First select the
variable or field you want to modify in the Inspector window before
executing the command. The debugger prompts you to enter an
expression to modify the variable.

Figure 24-38 Inspector window Watch menu
Symantec C++ User’s Guide and Reference 24-45

24 Commands Available in Debugging Mode

24-46 Symantec C++ U
The expression must evaluate to a value of the same size as the
variable, but not necessarily of the same type. Refer to Appendix A,
“Expression Evaluation,” for more information.

Delete!
Deletes the selected line. If the variable or object that is displayed on
this line is also displayed on other lines in the Inspector window,
these lines are not affected.

Pop-up menu
The Inspector window pop-up menu provides quick access to
frequently used menu choices in the Inspector window local menu.
The View, Show, ShowAs, and Watch commands access submenus
that have some of the commands that are available from the similarly
named menus on the Inspector window menu bar. The Modify and
Delete commands function the same way as do the similarly named
commands in the local menu.

Figure 24-39 Inspector window pop-up menu
ser’s Guide and Reference

The Memory Window
The Memory Window
The Memory window, shown in Figure 24-40, displays the memory
contents of a given address in different formats. Memory window
commands modify a memory location, set memory watchpoints, and
set the memory address to view.

The Memory window shows the contents of a range of memory
addresses. You can display memory in 11 different formats, ranging
from hexadecimal bytes to real numbers. To display memory, either
specify a particular address to view or view the address of a variable
by using the Data/Object window’s Show Memory command.

In addition to examining a particular address, you can scroll through
the Memory window to view all the memory in a segment. In 32-bit
flat memory, you can scroll through your application’s entire address
space. You may not have access to certain memory areas that are
restricted to your application. In that case, the memory contents are
displayed as Xs. You can modify memory and set memory
watchpoints as well.

Figure 24-40 The Memory window
Symantec C++ User’s Guide and Reference 24-47

24 Commands Available in Debugging Mode

24-48 Symantec C++ U
The Memory window in the debugger has three local menus:
View, Watch, and Others.

Table 24-9 Memory window commands

Menu Menu Item Shortcut
View Character Ctrl+H

Text Ctrl+T
Byte Ctrl+B
Word Ctrl+R
Unsigned Ctrl+U
Integer Ctrl+I
Long Integer Ctrl+G
Short Real Ctrl+S
Long Real Ctrl+E
Extended Real Ctrl+X
Address Ctrl+D

Watch Set Watchpoint Ctrl+W
Clear Watchpoint none
Clear All Watchpoints Ctrl+K

Others Modify Ctrl+M
Set Memory Address Ctrl+A
Set Live Memory Expression Ctrl+L
Show Child Ctrl+C
ser’s Guide and Reference

The Memory Window

Character

Text

Byte

Word

Unsigned
View menu
The View menu sets the display mode of the Memory window. To
set the display format, select one of the formats from the menu. The
currently selected format is displayed in the upper-left corner of the
window.

Sets the display format to character. The contents of memory are
displayed as ASCII characters enclosed in single quotes. If an address
does not contain a standard U.S. ASCII character, the octal value of
the character is displayed.

Sets the display format to complete text. The contents of memory are
displayed as characters in the PC’s code page. Each memory value is
displayed as a single character. The complete extended character set
is used to display the text. Values that cannot be displayed are
represented by dots.

Sets the display format to hexadecimal bytes. The contents of
memory are displayed as 2-digit hexadecimal values.

Sets the display format to hexadecimal words. The contents of
memory are displayed as 4-digit hexadecimal values.

Sets the display format to unsigned integers. The contents of
memory are displayed as 2-byte unsigned integers in the range of 0
to 65535.

Figure 24-41 Memory window View menu
Symantec C++ User’s Guide and Reference 24-49

24 Commands Available in Debugging Mode

24-50 Symantec C++ U

Integer

Long Integer

Short Real

Long Real

Extended Real

Address

Set Watchpoint
Sets the display format to signed integers. The contents of memory
are displayed as 2-byte signed integers in the range of -32768 to
32767.

Sets the display format to signed long integers. The contents of
memory are displayed as 4-byte signed integers in the range of
-2147483648 to 2147483647.

Sets the display format to short real numbers. The contents of
memory are displayed as 4-byte, single-precision real numbers. The
4-byte memory ranges that are not valid 4-byte reals are denoted by
the phrase “not a real.”

Sets the display format to extended real numbers. The contents of
memory are displayed as 8-byte, double-precision real numbers.

Sets the display format to long real numbers. The contents of
memory are displayed as 10-byte, extended-precision real numbers.

Sets the display format to addresses. The contents of memory are
displayed as addresses of the form segment:offset. If you are running
in 32-bit flat memory space, the addresses are displayed as 8-digit
hexadecimal numbers.

Watch menu
The commands on the Watch menu control memory watchpoints in
the program. After you set a watchpoint on a memory location, a
write to or a read from that location causes the program to stop near
the point where the access occurred. This feature allows you to catch
memory modifications that may be incorrect. For more information
about watchpoints, refer to Chapter 23, “Controlling and Configuring
the Debugger.”

Sets a memory watchpoint on the selected memory location.
Dragging and dropping from the Memory window to the Watchpoint
window also executes this command.

Figure 24-42 Memory window Watch menu
ser’s Guide and Reference

The Memory Window

Clear Watchpoint

Clear All Watchpoints

Modify

Set Memory Address

Set Live Memory
Expression

Show Child
Clears a watchpoint set on the selected memory location, reversing
the effect of the Set Watchpoint command on the location.

Clears all watchpoints set in the program.

Others menu
Use the Others menu commands to modify data, to specify the
direct memory address to display, to link the memory address to an
expression, or to set the memory address through an address in
memory.

Displays an Expression dialog box modifying the contents of the
selected memory location.

Updates the Memory window to the address specified. When a
debugger dialog box prompts you for an address, enter the
hexadecimal address.

Type the address in the form 0Xnnnn:0X nnnn to specify a 16-bit
segment:offset pair; type the address in the form 0Xnnnnnnnn,
where nnnnnnnn is an 8-digit hexadecimal number, to specify a 32-
bit address. For 16-bit code, to view another offset in the same
segment ac is currently displayed, enter only the offsed location. The
Memory window then displays the contents of memory at the new
location.

Links the address displayed in the Memory window to an expression
(such as CS:IP or SS:SP) and causes the debugger to display an
Expression dialog box. Each time control returns to the debugger
after a Go command, the expression is evaluated and the result is
used to update the memory location to display.

Sets the Memory window display address to the location contained
in the currently selected Memory window location. (The Memory
window must be displaying memory in the Address format.)

Figure 24-43 Memory window Others menu
Symantec C++ User’s Guide and Reference 24-51

24 Commands Available in Debugging Mode

24-52 Symantec C++ U
Pop-up menu
The Memory window pop-up menu provides quick access to
frequently used menu choices in the Memory window local menu.
The Set Watchpoint, Clear Watchpoint, Modify, and Show Child
commands function the same way as do the similarly named
commands in the local menu.

The Output Window
The Output window is used to display the messages generated by
the compiler, the linker, and the IDDE. For example, errors and
warnings generated by the compiler when it builds your code are
displayed in the Output window.

The Output window’s local menus are described below.

Figure 24-44 Memory window pop-up menu

Figure 24-45 Output window

Table 24-10 Output window menu commands

Menu Menu Item Shortcut
Edit Copy All none

Clear none
Stop! none
ser’s Guide and Reference

The Project Window

Copy All

Clear
Edit
The commands on the Edit menu preserve and erase the contents of
the Output window.

Copies the contents of the Output window to the Clipboard.

Clears the Output window.

Stop!
Choosing this menu causes the IDDE to stop a build or a parse
operation running in the background.

The Project Window
The Project window, displays in its left pane the names of the project
and any subprojects that form your program; in its right pane it
shows the source and object modules that comprise the project or
subproject selected on the left. Entries in the right pane can be
sorted along any of the columns displayed in that pane by clicking
on the column title; the title of the column along which entries are
sorted is shown in boldface.

Figure 24-46 Output window Edit menu

Figure 24-47 Project window
Symantec C++ User’s Guide and Reference 24-53

24 Commands Available in Debugging Mode

24-54 Symantec C++ U
Two columns in the right pane contain meaningful information only
when the IDDE is in debugging mode; otherwise they display N/A.
The EXE/DLL column indicates the executable to which a module
belongs. The Virtual column indicates whether or not a module
whose debug information has been loaded has not had its code
loaded. You can set breakpoints for such a module; however, you
cannot set watchpoints because the module’s data has not yet been
loaded.

The icon to the left of each entry in the Project window’s right pane
contains status information about the module or file:

• The black bug symbol in the left part of the icon (it may
look like * on some monitors) signifies that this module
is compiled with debugging information.

• The small black T in the right part of the icon signifies
that tracing into this module is enabled.

• The dot in the lower part of the icon signifies that a
breakpoint has been set in the module. If the dot is
green, the breakpoint is enabled; if the dot is red, the
breakpoint is disabled.

When the right pane is sorted according to name, the module entries
in the Project window are listed in alphabetical order by extension
within directories, with the executable name to the right.
ser’s Guide and Reference

The Project Window
The Project window in the debugger has four local menus: Parse,
View, Trace, and VCS (shown in Table 24-11).

The menu items in the Project window are described below.

Parse menu
The Parse menu is not used during debugging. For more
information about the commands on this menu, see Chapter 15,
“More about Projects and Workspaces.”

View menu
The View menu updates the Source and Data/Object windows to
display the source code and global data of the selected module. It is
also used to update the Assembly window to show the assembly
code of the module, to update the Function window to show the
functions in the module, and to display the starting code address of
the module.

Table 24-11 Project window commands

Menu Menu Item Shortcut
Parse Update All none

Parse All none
Parse File none
Unparse File none
Stop Parse none

View Source Ctrl+R
Global Data Ctrl+G
Functions Ctrl+U
Assembly Ctrl+A
All Ctrl+L
Code Address none

Trace Enable Ctrl+E
Disable Ctrl+D
Enable All none
Disable All none

VCS Configuration none
Get none
Put none
Merge none
Manager none
Settings none
Symantec C++ User’s Guide and Reference 24-55

24 Commands Available in Debugging Mode

24-56 Symantec C++ U

Source

Global Data
The commands in this menu are grayed out unless the selected file
contains code. For example, they are grayed out for header files,
.def files, and .res files.

Updates the Source window to show the source code of the selected
module. If the debugger cannot locate the source file, a dialog box
prompts you to enter the path of the source file. Dragging and
dropping from the Project window to the Source window also
executes this command.

Note
To search for source files in different directories,
include those directories in the DPATH environment
variable.

Updates the Data/Object window to show the global variables in the
selected module. Use this command to view the global data of any
module in the program. Dragging and dropping from the Project
window to the Data/Object window also executes this command.

Figure 24-48 Project window View menu

Figure 24-49 Project window View menu
ser’s Guide and Reference

The Project Window

Functions

Assembly

All

Code Address

Enable
Updates the Function window to show the functions in the selected
module. Dragging and dropping from the Project window to the
Function window also executes this command.

Updates the Assembly window to the starting code address of the
module. Dragging and dropping from the Project window to the
Assembly window also executes this command.

Updates the Source, Data, Function, and Assembly windows.
Double-clicking on a module entry also executes this command.

Displays a dialog box showing the code address of the first
statement in a module.

Note
Dragging and dropping from the Project window to
the Memory window displays memory starting from
the code address of the selected entry in the Project
window.

Trace menu
Sometimes you don’t want to trace into a particular module or set of
modules. The Trace menu contains commands that control whether
the debugger can step into, set breakpoints in, or watch data in a
particular module. By default, all modules in a program have tracing
enabled.

While stepping through a program using the Go menu commands,
the debugger does not stop the program in modules that have
tracing disabled. To prevent stepping into a particular module,
disable tracing for that module.

Enables tracing in the selected module.

Figure 24-50 Project window Trace menu
Symantec C++ User’s Guide and Reference 24-57

24 Commands Available in Debugging Mode

24-58 Symantec C++ U

Disable

Enable All

Disable All
Disables tracing in the selected module.

Enables tracing in all program modules.

Disables tracing in all program modules.

VCS menu
This menu is used to control the version control system and is not
used during debugging. See Chapter 22, “Using Version Control,” for
more information.

Pop-up menus
The Project window provides a pop-up menu for each of its two
panes. They are accessible by clicking on the left or the right side of
the Project window. Most of the commands in these menus are
generally not used during debugging. They are documented in detail
in Chapter 15, “More about Projects and Workspaces.”

There are three items in the Don’t Show submenu, Modules,
Parsed, and Dependencies. When Modules is checked, the right
pane excludes files explicitly added to the project. Checking Parsed
excludes files added to the project only as a result of parsing.
Checking Dependencies excludes files added to the project only as
a result of building the project.

Figure 24-51 Project window pop-up menu
ser’s Guide and Reference

The Register Window
The Register Window
The Register window, shown in Figure 24-52, displays the CPU
register values of the processor. If a math coprocessor is installed in
the system, or if the CPU has a built-in floating-point unit (FPU),
those floating-point register values are displayed as well. Commands
are provided for changing the contents and the display mode of the
registers.

The Register window displays the registers either horizontally or
vertically, and in either hexadecimal or decimal format. Select a
specific register by clicking on it or by using the arrow keys. The
Register window has two local menus, View and Others, listed in
Table 24-12.

Figure 24-52 Register window

Table 24-12 Register window commands

Menu Menu Item Shortcut
View Hex Ctrl+H

Decimal Ctrl+D
Vertical/Horizontal Ctrl+X

Others Modify Ctrl+M
Out Byte to Port none
Out Word to Port none
In Byte from Port none
In Word from Port none
Symantec C++ User’s Guide and Reference 24-59

24 Commands Available in Debugging Mode

24-60 Symantec C++ U

Hex

Decimal

Vertical/Horizontal

Modify

Out Byte to Port

Out Word to Port
View menu
The View menu contains commands that switch the display mode of
the registers between hexadecimal and decimal, and the display
orientation between horizontal and vertical.

Sets the register display mode to hexadecimal. After this command is
executed, register values are displayed as hexadecimal words. HEX is
displayed in the status line.

Sets the register display mode to decimal. After it is executed,
register values are displayed as unsigned integers. DEC is displayed
in the status line.

Toggles the register orientation between vertical and horizontal. The
chosen orientation persists from one session to the next.

Others menu
The Others menu commands modify the selected register.

Opens the Expression dialog box to modify the selected register.

Prompts for the I/O port number and a byte value. After you press
Enter, the debugger executes an OUT instruction to the specified
port.

Prompts you for I/O port number and a word value. After you press
Enter, the debugger executes an OUT instruction to the specified
port.

Figure 24-53 Register window View menu

Figure 24-54 Register window Others menu
ser’s Guide and Reference

The Source Window

In Byte from Port

In Word from Port
This command prompts you for the I/O port number and a byte
value. After you press Enter, the debugger executes an IN
instruction to the specified port.

Prompts for the I/O port number and a word value. After you press
Enter, the debugger executes an IN instruction to the specified port.

Pop-up menu
The pop-up menu of the Registers window contains the Modify
command, described above in the Others menu.

The Source Window
The Source window, shown in Figure 24-55, displays the source
code of a program. When you start debugging, the Source window
changes from an editing to a debugging window.

In debugging mode, you can view or change the current execution
position, manipulate source-level breakpoints, and set the Assembly
window view to a particular source line in a Source window. See
Chapter 6, “Editing Program Code,” for information on editing in a
Source window.

Figure 24-55 Source window
Symantec C++ User’s Guide and Reference 24-61

24 Commands Available in Debugging Mode

24-62 Symantec C++ U
Use any of the following methods to view the source file of a
particular module:

• Use the View Source command in the Project window.

• Select the Open command from the IDDE’s File menu to
view a module.

• Drag and drop the module from the Project window to
an open Source window, or to the desktop, to open a
new Source window.

• Double-click on the module in the Project window.

The location of the selection line in the Source window also
determines the current local scope for evaluation of local variables in
the expression evaluator. Refer to Appendix A, “Expression
Evaluation,” for more information.

Several different status messages can appear in the Source window.
If the source file cannot be found, the window displays the following
message:

Source file not found

If there is insufficient debug information in the module, the Source
window displays the following message:

No source associated

In debugging mode, the left margin of the Source window expands
to a vertically bordered pane two columns wide that contains the
breakpoint and execution indicators. If a breakpoint has been set on
a particular line, the first column of the margin contains a flag
(displayed as a circle on some systems) in the same row as the line
on which the breakpoint has been set.

If a line contains a function call that has not yet returned, the second
column contains an arrow. If execution has stopped at a breakpoint
in the program, the line with the breakpoint is similarly marked with
an arrow. Because it is the current line, it is also highlighted. (Refer
to “Working with Breakpoints,” in Chapter 23, “Controlling and
Configuring the Debugger,” for more information about
breakpoints.)
ser’s Guide and Reference

The Source Window
The Source window has five local menus: File, Edit, Goto, Macro,
and New!. The commands in the Macro menu also can be useful
during debugging, because some Source window debugging
commands can be recorded, edited, and played back. See Symantec
C++ IDDE Help for more information on the Symantec BASIC
scripting language. Some Goto commands also can be useful during
the debugging session. The other menus contain commands that are
generally applicable to editing. These are discussed in detail in
Chapter 21, “Text Editor Reference.”

Pop-up menu
The pop-up menu contains commands for executing the following:
setting and clearing breakpoints, changing execution location,
showing the code address of the current selection, updating the
Assembly, Function, Memory, and Data/Object windows, and
looking up the current value of a variable and locating the source for
a particular number.

Commands in the Source window debugging mode pop-up menu
are listed in Table 24-13.

Figure 24-56 Source window debugging mode pop-up menu

Table 24-13 Source window debugging mode pop-up menu

Menu Item Shortcut
Set/Clear Breakpoint none
Set Conditional Breakpoint none
Clear All Breakpoints none
Go Until Line none
Skip to Line none
Show Assembly none
Show Functions none
Show Data none
Show Memory none
Show Code Address none
Query Implementors none
Query Value none
Symantec C++ User’s Guide and Reference 24-63

24 Commands Available in Debugging Mode

24-64 Symantec C++ U

Set/Clear Breakpoint

Set Conditional
Breakpoint

Clear All Breakpoints

Go until Line

Skip to Line
These Source window pop-up menu items are described below.

Sets an unconditional breakpoint at the selected source line if no
breakpoint is set on that line. The next time any Go command is
executed (except for the Go until End command), execution of the
program stops when it reaches that line. If a breakpoint is already set
on the selected source line, this command clears it.

You can move a breakpoint by dragging the flag (circle) in the left
side to a new line, signifying that a breakpoint has been set on this
line. You can clear a breakpoint by dragging the flag out of the
Source window and dropping it on the desktop.

You also can set an unconditional breakpoint by dragging a source
line from the Source window to the Breakpoint window. It is
possible to clear the breakpoint by dragging the source line it is set
on into the Breakpoint window. You can perform these drag
operations only if the Normal Selection for Debugging option on the
Text page of the Editing/Browsing Options dialog box is
unchecked.

Sets a conditional breakpoint at the entry of the selected function.
This command displays the Set Code Breakpoint dialog box for
specifying the condition of the breakpoint. (Refer to “Conditional
and delayed breakpoints,” in Chapter 23, “Controlling and
Configuring the Debugger,” for more information about conditional
breakpoints.)

Clears all breakpoints in the current module.

Allows the program to run until execution reaches the current line, at
which point execution halts and the debugger regains control. If the
current line will not be executed again before the program
terminates, this is equivalent to the Go until End command.
Double-clicking on a line in the Source window also executes up to
that line.

Changes the execution location to the address of the selected source
line. After you execute the program again, it resumes execution from
the new location.

To use this command, select the source line on which you want
execution to resume and choose Skip to Line from the pop-up
menu.
ser’s Guide and Reference

The Source Window

Show Assembly

Show Functions

Show Data

Show Memory

Show Code Address

Query Implementors
If there is more than one source-level statement on that line, the
debugger uses the first statement on the line.

After this command is executed, the code and instruction pointer
registers are updated and the Source window shows the new
execution location. This command simulates a jump instruction and
lets you skip portions of code you don’t want to execute.

Updates the Assembly window to the code address of the current
selection. If more than one source-level statement is on that line, the
debugger uses the first statement on the line. You also can do this by
dragging and dropping from the Source window to the Assembly
window if the Normal Selection for Debugging option on the Text
page of the Editing/Browsing Options dialog box is disabled.

Updates the Function window to show the functions in the current
source module. You also can do this by dragging and dropping from
the Source window to the Function window if the Normal Selection
for Debugging option on the Text page of the Editing/Browsing
Options dialog box is disabled.

Updates the Data/Object window to show the data objects in the
current scope. Choose this command when you want to see the local
variables in the scope of the current source line. You also can do this
by dragging and dropping from the Source window to the Data/
Object window if the Normal Selection for Debugging option on the
Text page of the Editing/Browsing Options dialog box is disabled.

Updates the Memory window to display a range of memory, starting
with the code address of the selected source line. You also can do
this by dragging and dropping from the Source window to the
Memory window if the Normal Selection for Debugging option on
the Text page of the Editing/Browsing Options dialog box is
disabled.

Displays the code address of the selected line. If more than one
source-level statement is on that line, the command prompts you to
enter the statement number of the address you want to view, such as
1 or 2. If you don’t enter a statement number, the debugger uses the
first statement on the line.

Displays the Class Editor showing the implementation of the selected
member.
Symantec C++ User’s Guide and Reference 24-65

24 Commands Available in Debugging Mode

24-66 Symantec C++ U

Query Value
 Looks up the current value of the selected token and displays it on
the status line.

Toolbar
The Source window, when in debugging mode, has a debugging
toolbar that provides easy access to common debugging commands.
Refer to Figure 24-57 for the debugging toolbar icons. The function
of these icons is described below, in order, from left to right.

Open: Same as choosing Open from the File menu.

Toggle Breakpoint: Same as choosing Set/Clear Breakpoint from
the pop-up menu.

Conditional Breakpoint: Same as choosing Set Conditional
Breakpoint from the pop-up menu.

Query Value: Same as choosing Query Value from the pop-up
menu.

Find: Same as choosing Find from the Edit menu.

Find Previous: Searches backward in the file for search string.

Find Next: Searches forward in the file for search string.

Play Macro: Same as choosing Play Macro from the Macro menu.

The Spy Window
The Spy window, available only in the 16-bit and Win32s IDDEs, is
shown in Figure 24-58. It lets you:

• Log messages sent to selected windows
• Select windows to spy on
• Post messages to windows

Figure 24-57 Source window debugging mode toolbar
ser’s Guide and Reference

The Spy Window
• Set breakpoints on messages
• Update the Source window to the location of a

corresponding window procedure

The Spy window has four local menus: File, Show, Bpt, and
Commands, as listed in Table 24-14.

Menu items in the Spy window are described below.

Figure 24-58 Spy window

Table 24-14 Spy window commands

Menu Menu Item Shortcut
File Open none

Close none
Pause none

Show Window Proc Source Ctrl+S
lParam Memory Ctrl+E

Bpt Set Breakpoint on Message Ctrl+Z
Set Breakpoint Ctrl+B
Clear All Breakpoints Ctrl+K

Commands Spy Enabled Ctrl+Y
Clear Spy Window Ctrl+C
Specify Windows Ctrl+W
Specify Messages Ctrl+M
Post Message Ctrl+P
Symantec C++ User’s Guide and Reference 24-67

24 Commands Available in Debugging Mode

24-68 Symantec C++ U

Open

Close

Pause

Window Proc Source

1Param Memory
File menu
The File menu contains commands for opening, closing, and
pausing a message file.

Opens a message log file in which window messages are logged.
The command prompts you to enter a filename. The log file is
created, and all subsequent messages appearing in the Spy window
are written to that file until you close or pause logging to the file.

Closes a message log file so messages are no longer written to that
file. To begin message logging again, open a file with the Open
command.

Acts as a toggle switch that pauses message output to the message
log file. To continue message logging to the file, execute the Pause
command again. This command is checked when logging to the file
is paused.

Show menu
The Show menu contains two commands, one to update the Source
window to display the window procedure that handled a message,
and the other to update the Memory window with the address
specified by the lParam parameter of a message.

Updates the Source window to the location of the window
procedure to which the selected message was delivered. Dragging
and dropping from the Spy window to the Source window also
executes this command.

Uses the selected message’s lParam parameter as an address and
updates the Memory window to that address. The Memory window
then displays the contents of the structure passed in the message.

Figure 24-59 Spy window File menu

Figure 24-60 Spy window Show menu
ser’s Guide and Reference

The Spy Window

Set Breakpoint on
Message

Set Breakpoint

Clear All Breakpoints

Spy Enabled

Clear Spy Window
Dragging and dropping from the Spy window to the Memory
window also executes this command.

Bpt menu
The Bpt menu commands set and clear breakpoints on messages.
(Refer to Chapter 23, “Controlling and Configuring the Debugger,”
for details about setting breakpoints.)

Sets a breakpoint on the message currently selected in the Spy
window. Dragging and dropping from the Spy window to the
Breakpoint window also executes this command.

Displays a dialog box that lets you select a window and a message
on which to set a breakpoint.

Clears all breakpoints that have been set, whether unconditional or
conditional.

Commands menu
The commands on this menu are used to enable and disable the
spying of messages, to specify particular messages and windows to
spy on, and to post messages to a window message queue.

Enables or disables the spying of messages. A checkmark is
displayed when message spying is enabled.

Clears any messages logged in the Spy window.

Figure 24-61 Spy window Bpt menu

Figure 24-62 Spy window Commands menu
Symantec C++ User’s Guide and Reference 24-69

24 Commands Available in Debugging Mode

24-70 Symantec C++ U

Specify Windows

Specify Messages

Post Message
Specifies windows you want to spy on. A dialog box prompts you to
select or deselect windows to spy on when you choose this
command. If the specified window does not exist, the debugger
watches for and activates message spying after its creation.

Specifies which messages you want to spy on. A dialog box opens,
in which you select the messages.

Displays the Post Message dialog box, which allows you to post
one or more messages to one or more windows. This dialog box lets
you select a window handle and enter wParam and lParam values
for the message. The Queue for Posting button places this message
at the end of a queue that holds the messages you have specified.

Once you have queued at least one message for posting, the Exit
and Post button becomes enabled; clicking on it posts all the
messages you have queued to their respective windows, in the order
in which you queued them.

The Thread Window (32-Bit IDDE Only)
The Thread window, shown in Figure 24-63, presents at a glance all
the currently extant threads your program has created, together with
their states. All 16-bit applications can have only one thread; 32-bit
applications can be designed to have more than one thread. The
Thread window provides no benefits when debugging a single-
thread application. When debugging a 32-bit multithreaded
application, you can use the Thread window to:

• Switch easily between threads to debug

• Update the Source window with a thread’s current
location

• Update the Data/Object window with a thread’s data
ser’s Guide and Reference

The Thread Window (32-Bit IDDE Only)
• Update the Call window with a thread’s call chain

Current threads are listed one per row, with the currently selected
thread highlighted. You can change the selection by clicking on a
different row or by using the arrow keys. The primary thread is
identified by a bold arrow in the left margin. This thread receives
user input and is automatically created by the operating system
when a process (an instance of an application) is created. The active
thread—the one from which the debugger regained control—is
identified by a normal arrow in the left margin. The columns of the
Thread window have the following significance:

Figure 24-63 Thread window

Table 24-15 Thread window columns

Column Title Meaning
id Thread ID number. Thread IDs are unique

within a process.
stat Status. Possible values of this field are:

Frz - the thread is “frozen”
(suspended)
Thw - the thread is “thawed” (resumed
or not suspended)

prty Priority.
esp Current top of stack for thread.
eip Current instruction location for thread.
Symantec C++ User’s Guide and Reference 24-71

24 Commands Available in Debugging Mode

24-72 Symantec C++ U

Source

Data

Call Chain

All
The Thread window has two local menus, Show and Action, as
detailed in Table 24-16.

Show menu
The Show menu contains commands for updating the Source
window, Data/Object window, and Call window to reflect the state
of the currently selected thread.

Updates the Source window to display the location of the selected
thread.

Updates the Data/Object window to reflect the data of the selected
thread. The local variables of the active functions in the thread are
displayed with the values they have in the selected thread. Dragging
and dropping from the Thread window to the Data/Object window
also executes this command.

Updates the Call window to display the call chain for the selected
thread. Dragging and dropping from the Thread window to the Call
window also executes this command.

Updates the Source window, Data/Object window, and Call
window. This command is equivalent to executing the above three
commands at once. Double-clicking on any thread in the Thread
window also executes this command.

Table 24-16 Thread window commands

Menu Menu Item Shortcut
Show Source Ctrl+S

Data Ctrl+D
Call Chain Ctrl+C
All Ctrl+L

Action Freeze Ctrl+F
Thaw Ctrl+T
Freeze Others Ctrl+O
Thaw Others Ctrl+M

Figure 24-64 Thread window Show menu
ser’s Guide and Reference

The Trace Messages Window

Freeze

Thaw

Freeze Others

Unfreeze Others
Action menu
The Action menu contains commands for setting the status of
threads.

Freezes (suspends) the currently selected thread.

Unfreezes (resumes) the currently selected thread.

Freezes (suspends) all threads other than the active thread.

Unfreezes (resumes) all threads other than the active thread.

Pop-up menu
The pop-up menu contains all the commands in the Show and
Action menus, described above.

The Trace Messages Window
The Trace Messages window, shown in Figure 24-71, is a simple
scrolling window in which you can view debugging messages
written by the debugging version of Windows, by MFC, and by your
own program (using the MFC TRACE macros or the
OutputDebugString Windows API). You can log all messages
written to this window to a file (see the Open Trace File command
below).
Symantec C++ User’s Guide and Reference 24-73

24 Commands Available in Debugging Mode

24-74 Symantec C++ U
Note
Because of differences in system level support for
debugging, tracing does not begin in the Trace
Messages window on Windows 95 or Windows NT
until you start debugging and choose Go
Breakpoint or Go End. On Windows 3.1, tracing
begins when you start debugging.

The top line of the Trace Messages window displays the destinations
of messages. The possible messages are:

Figure 24-65 Trace Messages window

Table 24-17 Trace Messages window message destinations

Top Line Meaning
No output Messages are neither

written to the window
nor saved to the file.

Output to window only Messages are written
to the window only.

Output to window, File:
pathname

Messages go to both
the Trace Messages
window and to the
trace file.
ser’s Guide and Reference

The Trace Messages Window

Open Trace File

Close Trace File

Pause Trace file
The Trace Messages window has three local menus: File, Options,
and Clear!, listed in Table 24-18.

Menu items in the Trace Messages window are described below.

File Menu
File menu commands open a new trace file, close a trace file, and
pause the output to the trace file.

Opens a trace file, to which the Trace Messages window output is
saved. You are prompted to enter a filename. Provided you have
chosen Output to Window in the Options menu (see below), the
file is created and all subsequent Trace Messages window output is
written to this file, until you close or pause trace output to the file.

Closes the trace file so that trace messages no longer are written to it.
To begin logging output again, open a trace file using the Open
Trace File command.

Acts as a toggle to pause any Trace Messages window output to an
open trace file. To resume logging output to the log file, choose the
Pause Trace File command again. When output is paused, the
menu option has a checkmark next to it.

Table 24-18 Trace Window commands

Menu Menu Item Shortcut
File Open Trace File none

Close Trace File none
Pause Trace File none

Options Windows Debug Messages none
MFC Debug Messages none
OLE2 LRPC Spy none
Output to Window none
No Output none

Clear! none

Figure 24-66 Trace Messages window File menu
Symantec C++ User’s Guide and Reference 24-75

24 Commands Available in Debugging Mode

24-76 Symantec C++ U

Windows Debug
Messages
Options Menu
The Options menu commands let you specify the debug messages
you want to display in the Trace window (and in the trace file, if you
have one opened). The commands also let you toggle the display of
debug messages on and off.

Note
In the 32-bit IDDE, only the commands Output to
Window and No Output are present in the
Options menu..

(Not in 32-bit IDDE) Displays the Windows Trace Debug Options
dialog box, which lets you specify the categories of errors, warnings
and debug messages that you want the debugging version of
Windows to trap and notify you of..

The Break Options group lets you specify whether errors, warnings,
or messages should cause a break to the debugger. Unless Break
with INT 3 is checked, a stack trace is written to the Trace Messages

Figure 24-67 Trace Messages window Options menu

Figure 24-68 Windows Trace Debug Options dialog box
ser’s Guide and Reference

The Trace Messages Window
window whenever the debugging version of Windows causes a
break to the debugger.

The Debug Options group lets you direct the debugging version of
Windows to perform various operations that assist you in diagnosing
problems.

The Trace Options group lets you specify which informational
messages are written to the Trace Messages window.

The options chosen here are stored in the [Windows] section of
win.ini . The Trace Options group corresponds to the
DebugOptions entry in win.ini : each check box corresponds to
a single bit of the hexadecimal number stored as the value of
DebugOptions . The Break and Debug groups correspond to the
FilterOptions entry in win.ini : here also, each check box
corresponds to a single bit of the hexadecimal number stored as the
value of FilterOptions .

For further information on these options, see the documentation for
the WINDEBUGINFO structure in Microsoft Windows Programmer’s
Reference, Volume 3. In particular, the bits of the fields dwOptions
and dwFilter of WINDEBUGINFO correspond to the
DebugOptions and FilterOptions entries in win.ini .

Note
If you choose this command and are not running
the debug version of Windows, a message box
informs you:

This command requires installed
debugging Windows system binaries.
Symantec C++ User’s Guide and Reference 24-77

24 Commands Available in Debugging Mode

24-78 Symantec C++ U

MFC Debug Messages

OLE2 LRPC Spy

Output to Window

No Output
(Not in 32-bit IDDE) Displays the MFC Trace Debug Options
dialog box.

This dialog box lets you choose which MFC debug messages to
capture. The options chosen here are stored in the
[Diagnostics] section of the file afx.ini , located in the
Windows directory. The Enable Tracing check box corresponds to
the TraceEnabled entry in afx.ini . The remaining check boxes
correspond as a group to the single entry TraceFlags in
afx.ini , and each check box corresponds to a single bit of the
hexadecimal number stored as the value of TraceFlags .

(Not in 32-bit IDDE) Enables monitoring of OLE Lightweight Remote
Procedure Calls (LRPC), the mechanism by which OLE2 transports
procedure calls across process boundaries from an OLE container to
an OLE server or vice-versa. The command brings up the OLE2
LRPC Trace Debug Options dialog box.

Displays debug messages in the window. If you have opened a trace
file, you must choose this command for messages to be written to
the file. Choosing this checks the item on the menu and unchecks
No Output.

Disables display of debug messages in the window. It prevents
messages from being written to any opened trace file. Choosing this

Figure 24-69 MFC Trace Debug Options dialog box

Figure 24-70 OLE LRPC Trace Debug Options dialog box
ser’s Guide and Reference

The Trace Messages Window
command checks the item on the menu and unchecks Output to
window.

Clear!
Removes all messages in the Trace window, but does not remove
them from the trace file.

The Trace Messages Window
The Trace Messages window, shown in Figure 24-71, is a simple
scrolling window in which you can view debugging messages
written by the debugging version of Windows, by MFC, and by your
own program (using the MFC TRACE macros or the
OutputDebugString Windows API). You can log all messages
written to this window to a file (see the Open Trace File command
below).

The top line of the Trace Messages window displays the destinations
of messages. The possible messages are:

Figure 24-71 Trace Messages window

Table 24-19 Trace Messages window message destinations

Top Line Meaning
No output Messages are neither

written to the window
nor saved to the file.
Symantec C++ User’s Guide and Reference 24-79

24 Commands Available in Debugging Mode

24-80 Symantec C++ U

Open Trace File
The Trace Messages window has three local menus: File, Options,
and Clear!, listed in Table 24-18.

Menu items in the Trace Messages window are described below.

File Menu
File menu commands open a new trace file, close a trace file, and
pause the output to the trace file.

Opens a trace file, to which the Trace Messages window output is
saved. You are prompted to enter a filename. Provided you have
chosen Output to Window in the Options menu (see below), the
file is created and all subsequent Trace Messages window output is
written to this file, until you close or pause trace output to the file.

Output to window only Messages are written
to the window only.

Output to window, File:
pathname

Messages go to both
the Trace Messages
window and to the
trace file.

Table 24-20 Trace Window commands

Menu Menu Item Shortcut
File Open Trace File none

Close Trace File none
Pause Trace File none

Options Windows Debug Messages none
MFC Debug Messages none
OLE2 LRPC Spy none
Output to Window none
No Output none

Clear! none

Figure 24-72 Trace Messages window File menu

Table 24-19 Trace Messages window message destinations
ser’s Guide and Reference

The Trace Messages Window

Close Trace File

Pause Trace file

Windows Debug
Messages
Closes the trace file so that trace messages no longer are written to it.
To begin logging output again, open a trace file using the Open
Trace File command.

Acts as a toggle to pause any Trace Messages window output to an
open trace file. To resume logging output to the log file, choose the
Pause Trace File command again. When output is paused, the
menu option has a checkmark next to it.

Options Menu
The Options menu commands let you specify the debug messages
you want to display in the Trace window (and in the trace file, if you
have one opened). The commands also let you toggle the display of
debug messages on and off.

Note
In the 32-bit IDDE, only the commands Output to
Window and No Output are present in the
Options menu..

(Not in 32-bit IDDE) Displays the Windows Trace Debug Options
dialog box, which lets you specify the categories of errors, warnings

Figure 24-73 Trace Messages window Options menu
Symantec C++ User’s Guide and Reference 24-81

24 Commands Available in Debugging Mode

24-82 Symantec C++ U
and debug messages that you want the debugging version of
Windows to trap and notify you of.

The Break Options group lets you specify whether errors, warnings,
or messages should cause a break to the debugger. Unless Break
with INT 3 is checked, a stack trace is written to the Trace Messages
window whenever the debugging version of Windows causes a
break to the debugger.

The Debug Options group lets you direct the debugging version of
Windows to perform various operations that assist you in diagnosing
problems.

The Trace Options group lets you specify which informational
messages are written to the Trace Messages window.

The options chosen here are stored in the [Windows] section of
win.ini . The Trace Options group corresponds to the
DebugOptions entry in win.ini : each check box corresponds to
a single bit of the hexadecimal number stored as the value of
DebugOptions . The Break and Debug groups correspond to the
FilterOptions entry in win.ini : here also, each check box
corresponds to a single bit of the hexadecimal number stored as the
value of FilterOptions .

For further information on these options, see the documentation for
the WINDEBUGINFO structure in Microsoft Windows Programmer’s
Reference, Volume 3. In particular, the bits of the fields dwOptions
and dwFilter of WINDEBUGINFO correspond to the
DebugOptions and FilterOptions entries in win.ini .

Figure 24-74 Windows Trace Debug Options dialog box
ser’s Guide and Reference

The Trace Messages Window

MFC Debug Messages

OLE2 LRPC Spy
Note
If you choose this command and are not running
the debug version of Windows, a message box
informs you:

This command requires installed
debugging Windows system binaries.

(Not in 32-bit IDDE) Displays the MFC Trace Debug Options
dialog box.

This dialog box lets you choose which MFC debug messages to
capture. The options chosen here are stored in the
[Diagnostics] section of the file afx.ini , located in the
Windows directory. The Enable Tracing check box corresponds to
the TraceEnabled entry in afx.ini . The remaining check boxes
correspond as a group to the single entry TraceFlags in
afx.ini , and each check box corresponds to a single bit of the
hexadecimal number stored as the value of TraceFlags .

(Not in 32-bit IDDE) Enables monitoring of OLE Lightweight Remote
Procedure Calls (LRPC), the mechanism by which OLE2 transports
procedure calls across process boundaries from an OLE container to

Figure 24-75 MFC Trace Debug Options dialog box
Symantec C++ User’s Guide and Reference 24-83

24 Commands Available in Debugging Mode

24-84 Symantec C++ U

Output to Window

No Output
an OLE server or vice-versa. The command brings up the OLE2
LRPC Trace Debug Options dialog box.

Displays debug messages in the window. If you have opened a trace
file, you must choose this command for messages to be written to
the file. Choosing this checks the item on the menu and unchecks
No Output.

Disables display of debug messages in the window. It prevents
messages from being written to any opened trace file. Choosing this
command checks the item on the menu and unchecks Output to
window.

Clear!
Removes all messages in the Trace window, but does not remove
them from the trace file.

The Watch Window
Watchpoints are used to determine the approximate point in the
code where a specific memory location or a location in a range of
memory is written to or read from. A watchpoint defines a range in
memory and causes the debugger to stop the program if any value in
that memory range changes or is accessed.

You can set watchpoints on variables in the Data/Object window, on
memory locations in the Memory window, or on ranges.

Figure 24-76 OLE LRPC Trace Debug Options dialog box
ser’s Guide and Reference

The Watch Window
The Watch window, shown in Figure 24-70, displays a list of all
watchpoints set in the program. You can view the memory locations
of watchpoints and clear watchpoints selectively.

If no watchpoints are set in the program, the Watch window displays
the following message:

No watchpoints defined

After watchpoints are set on data in the program, the Watch window
displays the following information:

name [address range]

Name: If the watchpoint has been set on a variable in the Data/
Object window, this field contains the name of the variable. For
Memory window watchpoints, the field contains the string memory.

Address range: This is the range of memory being watched.

Byte1: This shows the successive bytes being watched in the
memory range.

The Watch window has two local menus, Show and Commands,
listed in Table 24-21.

Figure 24-77 Watch window

Table 24-21 Watch window commands

Menu Menu Item Shortcut
Show Memory Ctrl+E
Commands Clear Watchpoint Ctrl+C

Clear All Watchpoints Ctrl+K
Symantec C++ User’s Guide and Reference 24-85

24 Commands Available in Debugging Mode

24-86 Symantec C++ U

Memory

Clear Watchpoint

Clear All Watchpoints
The local menu commands of the Watch window are described
below.

Show menu
The Show menu contains one command that shows the starting
address of the memory, and displays the memory.

Displays the starting address of the watchpoint range and updates
the Memory window to display the memory at that address.

Commands menu
The commands in this menu let you clear selected watchpoints or all
the watchpoints in the program.

Clears selected watchpoints.

Clears all watchpoints set in the program.

Pop-up menu
The pop-up menu of the Watch window contains the commands
Show Memory and Clear Watchpoint. These behave identically to
the local menu commands Memory and Show Watchpoint
described above.

Figure 24-78 Watch window Show menu

Figure 24-79 Watch window Commands menu

Figure 24-80 Watch window pop-up menu
ser’s Guide and Reference

	More about Testing Programs
	Controlling and Configuring the Debugger 23
	Commands on the Debug Menu
	General
	Flip screen
	Animate delay
	Load symbols when editing
	Debug application startup
	Automatic switch to debug workspace
	Automatic check of project dependencies
	Show local data on start debugging
	Enable C++ class display
	Alternate class display
	Source search path
	Working directory

	Exceptions (32-bit IDDE only)
	Multiple EXE/DLL debugging

	Debug Toolbox Icons
	Working with Breakpoints
	Unconditional breakpoints
	Conditional and delayed breakpoints
	Examples of conditional breakpoints
	Example 1
	Example 2

	Working with Watchpoints
	Setting watchpoints
	Use watchpoints on local variables with caution

	Commands Available in Debugging Mode 24
	Debug Windows and Commands
	Drag and drop
	Accelerator keys

	The Assembly Window
	View menu
	Bpt menu
	Others menu
	Pop-up menu

	The Breakpoint Window
	Show menu
	Bpt menu
	Pop-up Menu

	The Call Window
	Show menu
	Pop-up menu

	The Command Window
	The Console Window
	The Data/Object Window
	Find menu
	View menu
	Show menu
	Expr menu
	Bpt menu
	Watch menu
	ShowAs Menu
	Modify!
	Inspect!
	New!
	Pop-up menu

	The Function Window
	Find menu
	Show menu
	Bpt menu
	View menu
	Pop-up menu

	The Graphic Data Window
	Simple graphs
	Complex graphs
	Show menu
	Zoom menu
	Others

	The Inspector Window
	Find Menu
	View Menu
	Show Menu
	ShowAs Menu
	Watch menu
	Modify!
	Delete!
	Pop-up menu

	The Memory Window
	View menu
	Watch menu
	Others menu
	Pop-up menu

	The Output Window
	Edit
	Stop!

	The Project Window
	Parse menu
	View menu
	Trace menu
	VCS menu
	Pop-up menus

	The Register Window
	View menu
	Others menu
	Pop-up menu

	The Source Window
	Pop-up menu
	Toolbar

	The Spy Window
	File menu
	Show menu
	Bpt menu
	Commands menu

	The Thread Window (32-Bit IDDE Only)
	Show menu
	Action menu
	Pop-up menu

	The Trace Messages Window
	File Menu
	Options Menu
	Clear!

	The Trace Messages Window
	File Menu
	Options Menu
	Clear!

	The Watch Window
	Show menu
	Commands menu
	Pop-up menu

