
Symantec C++
More about
Creating Programs

Part Four

15 More about Projects
and Workspaces

16 More about Project
Build Settings

17 More about
AppExpress

18 More about
ClassExpress

19 Using the Version
Control System

Symantec C++ Use
r’s Guide and Reference

More about Projects
and Workspaces

15

This

beg

chapter continues the discussion of projects and workspaces that
an in Chapter 3, “Starting a Project and Defining Workspaces.”

Here you find a detailed description of all commands and options
associated with workspaces and projects. The first part of the chapter
discusses the Environment menu and workspace options; the
remainder of the chapter covers project files, the Project menu,
project options, and the Project window.

Environment Menu Commands
The IDDE’s Environment menu (Figure 15-1) contains commands
with which you can modify the IDDE work environment.

A list of available workspaces is added to the end of the
Environment menu. The current workspace is checked. Choosing a
name in this list is equivalent to clicking on the workspace tab in the
Workspace toolbox.

Figure 15-1 Environment menu commands
Symantec C++ User’s Guide and Reference 15-1

15 More about Projects and Workspaces

15-2 Symantec C++ U

Workspace

New

Clone

Delete

Rename

Reset
The Workspace submenu (Figure 15-2) contains commands for
creating and editing workspaces.

Opens the Workspace Name dialog box.

To create a new empty workspace, type a name for the workspace
and click OK. The Build and Views toolboxes open automatically.

The New command is disabled if you already have five workspaces.

Opens the Workspace Name dialog box. To create a copy of the
current workspace, type a name for the new workspace and click
OK.

The Clone command is disabled if you already have five
workspaces.

Deletes the current workspace from the workspace set. The last
remaining workspace cannot be deleted.

Opens the Workspace Name dialog box. Type a new name for the
current workspace and click OK.

Resets the current workspace to the configuration it had when you
started the session or when you last saved it during the current
session with Save Workspace Set.

Figure 15-2 Workspace submenu

Figure 15-3 Workspace Name dialog box
ser’s Guide and Reference

Environment Menu Commands

Save Workspace Set

Environment Settings
Saves the current workspace configurations. These configurations
can be restored with the Reset command.

This command opens the Environment Settings dialog box with
which you specify various environment options. Two pages of
options are available: Workspace and Color.

Workspace
This page (Figure 15-4) provides options for controlling workspaces.

Save workspace set on exit
Saves the workspace set when the IDDE is closed.

Open last project on launch
When the IDDE is launched, automatically opens the project that
was open when the IDDE was last closed.

Figure 15-4 Workspace page of the Environment Settings dialog box
Symantec C++ User’s Guide and Reference 15-3

15 More about Projects and Workspaces

15-4 Symantec C++ U

Editing/Browsing
Settings
Color
This page (Figure 15-5) provides options with which to customize
the IDDE windows’ colors.

To change an item’s color, first click on the item name. A dashed
box appears around the item name. Then click on Change Color.
You may then choose a new color from a Windows Color dialog
box.

Opens the Editing/Browsing Settings dialog box, with which you
can view and change the IDDE’s editing and browsing options. For
more information, see Chapter 19, “Class Editor Reference,” Chapter
20, “Hierarchy Editor Reference,” and Chapter 21, “Text Editor
Reference.”

More about Projects
This section continues the discussion of projects that began in
Chapter 3, “Starting a Project and Defining Workspaces.”

What a project contains
The project file contains a list of all the files in your project. It also
contains information on how these files depend on one another.
When the project manager creates a makefile (a file that builds your
program), it uses a file’s extension to decide what kind of file it is.
The files you can put in a project are described here, along with how
the IDDE uses them to build a program.

Figure 15-5 Color page of the Environment Settings dialog box
ser’s Guide and Reference

More about Projects
C and C++ files
The IDDE compiles C and C++ source files to produce object files
and links the object files to produce the target.

C source files have the .c extension; C++ source files have either the
.cpp or the.cxx extension. When compiled, they all generate
object (.obj) files.

Header files
You do not need to add header files to a project; they are added
automatically by the project system. See the section “Dependency
tracking” later in this chapter.

If you do add a header file explicitly, it is flagged automatically for
precompilation. See the description of the Header Files page of the
Project Settings dialog box in Chapter 16, “More about Project
Build Settings.”

The header files that are included by C/C++ source files to provide
common interface definitions are identified by the file extensions
.hpp , .hxx , and .h.

In some situations, a C/C++ source file may be included by another
source file. In this case, you probably do not want a separate object
file created from that included source file. Do not add the file to the
project. When you compile the target, the project system adds the
included file but tracks it as an included object that should not be
compiled or linked independently.

Assembly files
Your project may contain assembly source and header files.
Assembly language source files are identified by the file extension
.asm . Assembly language header files are identified by the file
extension .inc.

Note
For assembly files to be built as part of a project,
MASM must be in a directory specified by the PATH
environment variable. For a NetBuild project, MASM
must be in a directory specified by the PATH
environment variable of every buildserver, and the
buildclient.
Symantec C++ User’s Guide and Reference 15-5

15 More about Projects and Workspaces

15-6 Symantec C++ U
Object files
Your project can include pre-existing object files—files for which
you do not have the source or that were compiled outside the IDDE.
Such object files are identified by the file extension .obj . These
objects are linked into your executable.

Resource and dialog script files
Your project can include resource script files, dialog script files, and
other binary resource files. The IDDE compiles these script files to
produce a resource file. After the IDDE links the object files, it binds
the resources from the resource files into the executable.

Table 15-1 Types of resource files

Libraries
Your project can include libraries. The IDDE links the libraries with
the project’s object files to produce the executable file. If your
program uses a dynamic link library (DLL), don’t add the DLL to the
project file. Instead, add the DLL’s import library (.lib).

Libraries or library interfaces to a DLL that you want to link into your
executable are identified by the file extensions .lib .

Linker definition files
Your project can include a linker definition (sometimes called
module definition) file. Use a linker definition file to indicate to the
linker how to build a library or executable. These files are identified
by the file extension .def .

If you have your own .def file, you can include it in the project.
The IDDE automatically modifies the .def file to change a linker
option if necessary. If you do not specify a .def file, one is
generated and maintained automatically for you.

File Type Description
.rc Source scripts of resource files that are

compiled by the Symantec C++ resource
compiler

.ico, .cur,

.bmp
Binary resources

.res Compiled binary resources
ser’s Guide and Reference

More about Projects
Project files
The IDDE automatically generates and maintains project files. Project
files can be nested to form a hierarchical project structure. Project
files are identified by the file extension .prj .

Option set
You can include your own option set. Option sets that you create are
identified by the file extension .opn .

Batch and makefiles
You can include a batch or makefile. Batch files are identified by a
.bat file extension, and makefiles by a .mak file extension.

When you add a batch file or a makefile to a project, the Build
Order dialog box (accessible via the Build Order button on the
Make page under the Build tab of the Project Settings dialog box)
becomes available to specify when to execute your batch files and
makefiles.

Project-generated files
The project system generates and maintains the files listed in Table
15-2.

Table 15-2 Project-generated files

File Extension Description
.prj The project file that contains information

on the base directory of the project, the
option set, the Version Control System
(VCS) configuration location, and each
of the files and its attributes.

.mak The makefile generated from the project
options and files. You don’t have to
write and maintain a makefile—the
project system does it for you.

.def The linker definition (module definition)
file. You can specify your own .def file
or let the project system generate and
maintain one for you.
Symantec C++ User’s Guide and Reference 15-7

15 More about Projects and Workspaces

15-8 Symantec C++ U
Hierarchical project structure
You can include projects within projects (to any depth) to create a
hierarchical project structure. Hierarchical projects have many uses.

You can use hierarchical projects if you need to build more than one
target as part of a system. For example, if your system includes an
executable and a DLL, you can create a separate project for the DLL
and include this new subproject in the master project. The library is
built automatically when (and if) necessary. (Note that, since
Windows relies on the module name to determine the uniqueness of
modules, you need to give your targets different names. For
example, do not name the executable generated by a project
MYMOD.EXE and name a DLL created by a subproject MYMOD.DLL;
an error results.)

In other cases, some files may need different compiler settings. You
have two options. You can put those files in a separate subproject,
setting compile options for the project as necessary. Or, you can
override compile options on a file-by-file basis. To do this, right-click
on the file in the Project window, and choose Settings from the
pop-up menu. You can then set compile options for that file.

If you have a special preprocessing or translation step in your build
process, you can create a subproject (a project within another
project) for that make step. To accomplish the preprocessing, use
the Make page under the Build tab in the Project Settings dialog
box (see Chapter 16, “More about Project Build Settings”) to call your
own makefile or batch file.

Use hierarchical projects to handle different releases or versions of a
project. To build all the variants in one simple step, create a master

.dep The file that keeps the dependency
listing.

.opn The file in which project options are
stored.

.lnk A resource file that directs the linker to
build your target. It is generated and
maintained by the project system.

File Extension Description
ser’s Guide and Reference

More about Projects
project that contains only projects. When you build the master, each
of the variants is built.

These examples show that the hierarchical project system can be
used in a variety of ways to customize the build process. Note that
dependency tracking still works for subprojects—they are built as
needed, before the master project is built.

Note
When you build a project that has a hierarchical
structure, all subprojects are rebuilt with either the
Debug or Release setting, whichever is applied to
the master project. To ensure that each subproject is
linked with the correct libraries (Debug or Release),
you need to rebuild each subproject’s .LNK file.

Dependency tracking
The project system automatically tracks dependencies among the
components of a project. Dependency information is updated with
each successive compilation. As you add or remove include files, for
example, the corresponding dependencies are updated. You have
the option of turning this tracking off.

The IDDE also tracks changes made to build options and determines
how much of the project needs to be rebuilt based on those
changes. For example, if you change a compiler setting, all the
sources are rebuilt. If you change a resource compiler option, only
the resource compiler and link steps are executed. If you change a
link option or library directory, only the linker is run. By tracking
these changes, the project system supports efficient and accurate
builds.

In the Windows 3.1 version of the IDDE, the project system can track
files in the project with respect to version control. For more
information on project and source code control, see Chapter 22,
“Using Version Control.”

Project menu commands
The IDDE’s Project menu (see Figure 15-6) contains commands to
create, open, edit, and close projects; to build projects, to run the
application; and to set project options. At the end of the menu, the
Symantec C++ User’s Guide and Reference 15-9

15 More about Projects and Workspaces

15-10 Symantec C++ U

New

Open

Edit

Close

Build

Stop Build

Rebuild All

Link
IDDE adds the names of the most recently opened projects so that
you can switch between projects as you work.

Opens the ProjectExpress dialog box, as described in Chapter 3,
“Starting a Project and Defining Workspaces.”

Opens the Open Project dialog box, as described in Chapter 3,
“Starting a Project and Defining Workspaces.”

Opens the Edit Project dialog box, as described in Chapter 3,
“Starting a Project and Defining Workspaces.”

Closes the current project.

Builds your project. The IDDE examines all files in the project to
determine whether they are up-to-date and recompiles only the
necessary files.

Stops a build in progress. You can also stop a build by choosing
Stop! from the Output window’s menu bar.

Rebuilds all files in your project, regardless of whether they are
up-to-date.

Links all object files and libraries. Use Link instead of Build when
adding .lib or .obj files to a project or subtracting them from a

Figure 15-6 Project menu commands
ser’s Guide and Reference

More about Projects

Execute Program

Arguments

Settings
project. You can also use this command if you know all files are up-
to-date. There is no dependency checking with Link, so linking is
faster than building. Also, you would use Link rather than Build if
you changed source code but you wanted to generate an .exe with
existing .obj files.

Executes your application. Command-line arguments may be set
with the Arguments command.

Opens the Run Arguments dialog box (Figure 15-7).

Type the command-line arguments that you want passed to an
application when you choose Execute Program.

Opens the Project Settings dialog box. This dialog box lets you set
project options that specify how the IDDE builds a project. The
following pages are available by clicking on the tabs at the top of the
dialog box: Target, Build, Option Sets, VCS, and Directories.

Figure 15-7 Run Arguments dialog box
Symantec C++ User’s Guide and Reference 15-11

15 More about Projects and Workspaces

15-12 Symantec C++ U
Target settings
The options on the Target page (Figure 15-8) specify the target and
platform for your project.

Operating system
This set of options determines the target system for your project.
Depending on the selection of the target system, different Target
Type options become available. The target system can be one of the
following:

• Windows 95
• Windows NT
• Win32s
• Windows 3.1
• DOS
• DOSX

All the systems are self-explanatory except DOSX. This option selects
the DOSX 32-bit DOS Extender (which comes with Symantec C++)
as the target operating system.

Figure 15-8 Target page of the Project Settings dialog box
ser’s Guide and Reference

More about Projects
Target type
This set of options determines what your project will actually be: an
executable, a library, a Windows DLL, or a simple console. The
target type can be one of the following:

Executable: Builds an executable program (.exe).

Dynamic Link Library: Builds a Windows DLL. This option is not
available when Operating System is set to DOS or DOSX.

Static library: Builds a static library (.lib)—that is, a library a
program links to at compile time—as opposed to DLL, which links at
run-time.

COM: Builds a DOS executable .com file. This option is only
available when Operating System is set to DOS.

Console: Builds a Windows console program. In Windows 3.1 (and
Win32s) this creates an SDI application in which the standard input
and output functions are carried out through the SDI window. In
Windows 95 and Windows NT, this creates an executable that runs
as a console application, simulating an old-style teletype.

Uses
These options let you select the extension libraries that are linked to
the executable.

MFC (Microsoft Foundation Class Library): Links the libraries needed
for an application that uses classes from the MFC. Two methods of
linking are available: static library (.lib) or dynamic link library
(DLL).

OLE (Object Linking and Embedding): Links the libraries needed for
creating an application that uses OLE.

VBX (Visual BASIC Control): Links the libraries needed to create a
Visual Basic control.
Symantec C++ User’s Guide and Reference 15-13

15 More about Projects and Workspaces

15-14 Symantec C++ U
OCX (OLE Control): Links the libraries for building an OLE control.

ODBC (Open Database Connectivity): Links the libraries needed to
access an ODBC data source.

Project settings
Two options determine whether debugging information is included
in the executable.

Debug: The executable contains debugging information and can be
debugged by the IDDE debugger.

Release: The executable contains no debugging information. It
cannot be debugged.

Allow project to be built
If this option is selected, the application can be built. Deselect this
option if a project should not be built (for example, if you don’t
want a subproject rebuilt when you choose Rebuild All in the
parent project).

Parse for browsing
If this option is selected, the project is automatically parsed. Deselect
if you don’t want the Browser to parse the source code. See Chapter
5, “Defining Classes and Their Hierarchies,” for more information.

Build settings
The options on the Build page control how your project is compiled
and linked. See Chapter 15, “More about Projects and Workspaces.”
ser’s Guide and Reference

More about Projects
Option sets
The Option Sets page (Figure 15-9) lets you save and retrieve project
options. This feature makes it easy to define options once for a
particular kind of target and apply them later to another project.

When you exit the IDDE or close a project, current options are saved
in the project option file (.opn). This file has the same name as the
project. For example, if the project name is test.prj , the option
set associated with that project is named test.opn .

The list of option sets includes sets you define and several
predefined option sets. Click on an option set name to select the
option set; double-click on an option set name or click on Load to
load the option set.

The predefined option sets are useful starting points for defining
your own custom options. When you load one of these option sets,
save any changes to another option set so the defaults are intact for
later use. These option sets are named according to the target type
and whether debugging information is placed in the executable.

The four buttons on the dialog box have the following functions:

Load: Loads the selected option set.

Figure 15-9 Option Sets page of the Project Settings dialog box
Symantec C++ User’s Guide and Reference 15-15

15 More about Projects and Workspaces

15-16 Symantec C++ U
Save: Saves the current option set.

Create: Creates a new option set. You are prompted for the new
set’s name.

Browse: Opens the Option Set Name dialog box, from which you
can select an option set file to load.

VCS options
The options on the VCS page control the version control system.
These options are only available in the 16-bit IDDE. For information
about version control see Chapter 22, “Using Version Control.”

Directories
The options on the Directories page (Figure 15-10) specify various
directories used by the compiler, linker, and browser.

Include directories
Specifies directories to be searched for included files. You may
specify multiple directories by separating each pathname with a
semicolon. These directories are searched after those specified by
the INCLUDE environment variable.

Figure 15-10 Directories page of the Project Settings dialog box
ser’s Guide and Reference

The Project Window

Update All
Library directories
Specifies which directories to search for libraries. You may specify
multiple directories by separating each pathname with a semicolon.
These directories are searched after those specified by the LIB
environment variable.

Compiler output directory
Specifies the directory in which object files (.obj) are placed.

Target output directory
Specifies the directory in which the linked target is placed.

Browser exclude directories
Specifies the directories that are excluded from parsing by the
browser. Use this option, for example, to exclude the MFC header
file directory, and thus prevent the display of MFC classes in the
Class and Hierarchy editors.

Source search path
Specifies which directories to search for source files while
debugging.

The Project Window
This section describes all the menu commands available from the
Project window.

Parse menu commands
The Parse menu (Figure 15-11) contains commands to control the
parsing of source files. Parse information (information about the
project’s C++ classes and class members) is stored in a global pool
that is accessible to and used by the Class and Hierarchy Editors.

Parses all unparsed files in the project.

Figure 15-11 Parse menu commands
Symantec C++ User’s Guide and Reference 15-17

15 More about Projects and Workspaces

15-18 Symantec C++ U

Parse All

Parse File

Unparse File

Stop Parse
Parses all files in the project.

Parses the selected file, adding information about classes and
members in the file to the global parse information.

Unparses the selected file. It removes classes and members in the file
from the global parse information.

This command cancels a parse operation in progress. You can also
stop a parse by choosing Stop! from the Output window’s menu bar.

View menu commands
In debugging mode, commands in the View menu update other
IDDE windows to show information pertaining to the selected file.
For more information on this menu refer to Chapter 24, “Commands
Available in Debugging Mode.”

Trace menu commands
The Trace menu controls whether the debugger can step into, set
breakpoints in, or watch data in a particular source file in debugging
mode. See Chapter 24, “Commands Available in Debugging Mode,”
for more information.

VCS
The VCS menu controls the Version Control System operation.
Version control options are only available in the 16-bit IDDE. The
VCS menu commands and their functions are described in Chapter
22, “Using Version Control.”

Project window left pane pop-up menu commands
This menu (Figure 15-12) contains commands that operate on the
current project.

Figure 15-12 Left pane pop-up menu commands
ser’s Guide and Reference

The Project Window

New Subproject

Link

Build

Rebuild All

Parse

Edit Project

Settings

Compile

Parse
Opens the New Sub-Project dialog box, in which you select a
project to be a subproject of the currently selected project.

Links the project. This is the same as choosing Link from the IDDE’s
Project menu.

Builds the project. This is the same as choosing Build from the
IDDE’s Project menu.

Rebuilds the entire project. This is the same as choosing Rebuild All
from the IDDE’s Project menu.

Parses all files. This is the same as choosing Parse All from the
Parse menu.

Opens the Edit Project dialog box, as described in Chapter 3,
“Starting a Project and Defining Workspaces.” This is the same as
choosing Edit from the IDDE’s Project menu.

Opens the Project Settings dialog box. This is the same as choosing
Settings from the IDDE’s Project menu.

Project window right pane pop-up menu commands
This menu (Figure 15-13) contains commands that operate on the
selected file.

Compiles the selected file.

Parses the selected file. This is the same as choosing Parse File from
the Parse menu.

Figure 15-13 Right pane pop-up menu commands
Symantec C++ User’s Guide and Reference 15-19

15 More about Projects and Workspaces

15-20 Symantec C++ U

Other

Preprocess

Disassemble

Precompile

Get

Put

Remove

Attributes

Read Only

Read/Write

Don’t Show

Modules

Parsed

Dependencies

Settings
Opens the Other submenu, which contains the Preprocess,
Disassemble, and Precompile commands.

Preprocesses the selected file.

Disassembles the selected file.

Precompiles the selected file.

Is the same as choosing Get from the VCS menu.

Is the same as choosing Put from the VCS menu.

Removes the selected file from the project. You can also remove a
selected file from the project by pressing Delete.

Sets read/write attributes for the selected file. They are mutually
exclusive, so only one can be selected. A checkmark is displayed
next to the selected item.

Sets the attribute to read only.

Sets the attribute to read/write.

Filters the display of the project’s files.

Does not list modules added by the debugger.

Does not list files added by the parser.

Does not list files included through dependency relationships.

Lets you set certain compiler options for an individual source file,
overriding those specified for the project as a whole. Choosing this
command opens the Project Settings dialog box with only the Build
tab available (see Chapter 16, “More about Project Build Settings”).
Only the compiler-related subpages (Compiler, Code Generation,
Header Files, Code Optimizations, Output, Warning, and Debug
Information) are available. The Inherit from Project button resets this
source file’s individual options to those of the project.
ser’s Guide and Reference

The Project Window

Name

Ext

Path

Date

Time

Parsed

EXE/DLL

Virtual
“...” pop-up menu commands
This menu (Figure 15-14) is opened by clicking on the “...” box
above the vertical scroll bar in the right pane of the Project window.

Use this menu to set up the display of project file information in the
right pane. Information that can be displayed includes:

Displays the filename.

Displays the file extension.

Displays the file path.

Displays the modification date.

Displays the modification time.

Displays whether or not the file has been parsed.

Displays to which EXE or DLL the module belongs (in debugging
mode).

Displays whether the module is virtual (in debugging mode).

For more information about the EXE/DLL and Virtual columns, see
“The Project Window,” in Chapter 24, “Commands Available in
Debugging Mode.”

Columns of information are removed from the display by dragging
the column heading out of the column heading area. (The item then
becomes available on the “...” pop-up menu.) The order of the
columns can be changed by dragging the column headings to a new
position.

Figure 15-14 “...” pop-up menu commands
Symantec C++ User’s Guide and Reference 15-21

15 More about Projects and Workspaces

15-22 Symantec C++ U
Project window mouse functions
Use the mouse to open projects, select project files, open source
windows, drag project files to other windows, open pop-up menus,
and change the relative sizes of the right and left panes.

To resize the panes, first position the cursor on the dividing line
between panes. The cursor changes to a two-headed arrow. Then
click the left mouse button and drag the separator to the desired
location.

The right mouse button opens the pop-up menus (see the sections
“Project window left pane pop-up menu commands” and “Project
window right pane pop-up menu commands” earlier in this chapter).

Click on a project or subproject in the left pane to open that project.
Double-click on the current project in the left pane to toggle
(expand or collapse) the display of its subprojects.

Click on a project file in the right pane to select it. Double-click on a
file in the right pane, or drag it to an empty part of the workspace, to
open the Source window to view and edit the file. (Double-clicking
on a subproject in the right pane opens that subproject.)

You can drag files from the right pane to Source windows, Function
windows, Data/Object windows, and Assembly windows.

Finally, to eliminate a column of information from the right pane,
click on the title at the top of the column and drag it outside the
column heading area. Columns of information are restored from the
“...” pop-up menu, to the right of the column titles. To rearrange
columns of information, drag the title at the top of the column to a
new position. You can make columns wider or narrower by
dragging the column title’s right edge to the right or left. Clicking on
a column title re-sorts the list of project files according to that
column.
ser’s Guide and Reference

More about Project
Build Settings

16

This

buil

chapter details the options for controlling how your project is
t. This discussion began in Chapter 15, “More about Projects and

Workspaces.” This chapter lists and explains the options on the Build
page of the Project Settings dialog box. You access these options
by selecting Settings from the Project menu, then clicking on the
Build tab.

The Build page of the Project Settings dialog box is composed of
18 subpages. The subpages are displayed in a listbox on the left of
the window. To access a particular subpage, click on its name. The
options displayed on the right change with each subpage. Subpages
are organized hierarchically, as shown in the listbox.

This chapter covers all the subpages on the Build page of the
Project Options dialog box. The first section introduces you to
build settings and the Project Settings dialog box, and the later
sections describe the subpages in the order in which they are listed
on the Build page.

For more detailed information on how each of these options affects
the compilation of your code, refer to the Compiler and Tools Guide.
Appendix B, “IDDE Settings and Command-Line Options,” details
how each of these options map to the corresponding SC, OPTLINK,
Make, or Librarian command line options.

Introducing Build Settings
Choose the Settings command from the IDDE’s Project menu to
open the Project Settings multipage dialog box. Using the tabs at
the top of the dialog box, you can select different pages, each of
which presents a set of options.

Click on the Build tab in the dialog box to open the Build page. The
Build page is composed of subpages of options. Select a subpage by
Symantec C++ User’s Guide and Reference 16-1

16 More about Project Build Settings

16-2 Symantec C++ U
clicking on its name in the listbox on the left of the Build page. The
following subpages are available:

• Compiler
• Code Generation
• Header Files
• Memory Models
• Code Optimizations
• Windows Prolog/Epilog
• Output
• Warnings
• Debug Information
• Linker
• Packing & Map File
• Definitions
• Segments
• Imports/Exports
• Resource Compiler
• Make
• External Make
• Librarian

Each of the subpages is described in a separate section in this
chapter.
ser’s Guide and Reference

Compiler
Compiler
The Compiler subpage (Figure 16-1) contains a variety of parameters
controlling compilation.

Enforce ANSI compatibility
Establishes the necessary parameters so the compiler generates C
code that conforms to ANSI standards. Refer to the Compiler and
Tools Guide for information on the restrictions that take effect when
you enable this option.

Treat source as C++
With this option selected, the compiler treats C source files as C++
files. The option is useful if you want to:

• Compile the file to take advantage of type-safe linkage

• Link a C file to a C++ file without changing it or giving it
a C++-compatible extension

You can also use this option on C++ header files with the .h
extension.

Figure 16-1 Compiler subpage
Symantec C++ User’s Guide and Reference 16-3

16 More about Project Build Settings

16-4 Symantec C++ U
Relax type checking
Causes the compiler to use relaxed (non-ANSI) type checking. The
following data types are then treated as equivalent:

• char == signed char == unsigned char
• short == unsigned short
• long == unsigned long

In addition, for 16-bit compilations:

• int == unsigned == enum == short

And for 32-bit compilations:

• int == unsigned == enum == long

The option is useful for quickly porting code from compilers that do
not obey the full set of ANSI type-checking rules.

Suppress predefined macros
Suppresses the definition of the non-ANSI predefined macros.

Exception handling
Enables implementation of exception handling.

Run-time type information
Enables implementation of run-time type information.

Enable new[], delete[] overloading
Enables overloading of operator new[] and operator delete[] . It
also sets the predefined macro _ENABLE_ARRAYNEW to 1.

Compiling with Enforce ANSI compatibility automatically enables
this option.

char behavior
This option controls the way the compiler treats a char type. By
default, the compiler treats char types as signed . Set this option to
unsigned to quickly port code that depends on unsigned char
types. Note that the behavior of the run-time library routines is not
affected by this option unless they are also recompiled.

signed: Makes char types behave as signed char types.

unsigned: Makes char types behave as unsigned char types.
ser’s Guide and Reference

Compiler
char==unsigned char: Changes the type of char to be unsigned.

Prototyping
This option specifies how the compiler handles function prototypes.
New code should always be fully prototyped, due to the
requirements of type-safe linkage and the support for alternative
linkage conventions.

There are three prototyping possibilities: Standard, Autoprototype,
and Strict.

Standard: Turns off autoprototyping and strict prototyping.

Autoprototype: Enables the compiler to generate a prototype
according to the way the function is used, even if one is not
specified for a function. Subsequent uses are checked against the
generated prototype. This is especially useful when compiling old C
code that is not completely prototyped.

Strict: Requires that all functions be declared (prototyped) before
being used. This declaration provides the compiler with the function
name, return type, and storage class of a function, as well as the
number and type of arguments that may be passed to it. Once the
compiler encounters a function prototype, it can check each function
call in the source file against that prototype and flag an error for the
calls that do not match it.

International characters
This option specifies how the compiler interprets 2-byte Asian
language character codes within character constants and strings. That
is, if a character code represents the first byte of a 2-byte sequence,
the second byte is not checked to see whether it is a backslash or a
closed quote. The second byte cannot be a NULL (0), a carriage
return (0x0D), or an end-of-file (0x1A).

None: Allows no 2-byte sequences.

Japanese: Signals the 2-byte sequence with a value in the range
0x81 ... 0x9F and 0xE0 ... 0xFC

Taiwanese/Chinese: Signals the 2-byte sequence with a value in
the range 0x81 ... 0xFC
Symantec C++ User’s Guide and Reference 16-5

16 More about Project Build Settings

16-6 Symantec C++ U
Korean: Signals the 2-byte sequence with a value in the
range 0x81 ... 0xFD

Other options
The options below direct the compiler to define a macro, include a
header file, or instantiate a template.

Defines
Allows you to specify macro definitions on the compiler command
line. You should separate multiple Defines with a semicolon (;).

Include filename
Directs the compiler to include a header file for all modules in the
project.

Instantiate template
Creates an instance of a template in your program.

Code Generation
The Code Generation subpage, shown in Figure 16-2, contains
parameters that control how the compiler generates code.

Figure 16-2 Code Generation subpage
ser’s Guide and Reference

Code Generation
Pointer validation
Makes the resulting program validate each pointer as it is
dereferenced; if the pointer is invalid, a run-time error occurs. This
slows and slightly increases the size of the resulting code.

Generate stack frame
Generates a stack frame for each function. The stack frame is
generally for the use of the debugger.

Check stack overflow
Inserts stack overflow checking at the beginning of each function.
The resulting program aborts with an error message if it detects a
stack overflow.

Fast floating point
Directs the compiler to produce the fastest possible floating-point
code. No compatibility checking is performed.

Generate inline 8087 code
Causes the compiler to generate inline 80x87 instructions. It
significantly speeds up floating-point code, reduces its size, and
improves its accuracy.

Generate virtual function tables in far data
Affects Compact and Large memory models only. It causes the virtual
function tables to be placed in far data segments rather than in the
code segment.

Use Pascal calling convention
Makes Pascal, instead of cdecl, the default linkage for all functions
and global data. Because all C library routines have cdecl linkage,
they must be prototyped as such before being called. Therefore, you
must include the appropriate header files. The main() function
must also be declared cdecl for the linker to find it.

Using Pascal as the default linkage type results in a roughly 3% code
size reduction and a corresponding speed up in generated code.

Use Stdcall calling convention
Makes stdcall the default linkage for all functions and global data,
instead of cdecl.
Symantec C++ User’s Guide and Reference 16-7

16 More about Project Build Settings

16-8 Symantec C++ U
Note
Under Windows 95 and Windows NT, Symantec's
name mangling scheme now appends the string
"@nn" to the names of all stdcall functions (where
nn is the number of bytes in parameters to the
function). Previous versions of Symantec C++ did
not append this string to mangled names.

Enable function-level link
Directs the compiler to encapsulate functions in initialized common
blocks (COMDAT records). This allows the linker to perform
function-level linking, which results in a smaller executable.

No default library
Prevents the compiler from embedding the default library record in
the object file. This option can result in a significant decrease in
program size when generating a large library.

Set data threshold
Places large arrays in far data segments. The threshold size is set in
the adjacent textbox.

Code segment
These options govern the ways in which code segments are handled.

Generate new segment for each function
Causes the compiler to start a new code segment each time it
encounters a global far function. The name of the segment is the
name of the function with _TEXT appended.

Override default code segment name
Overrides the default code segment name. Type the new name in
the Name textbox.

Put switch tables in code segment
Places switch tables in the code segment rather than in the data
segment. It is useful when data segment space is critical. Do not use
this option when the code segment in a Small or Compact model
program is close to overflowing.

Put expression strings in code segment
Puts expression string literals into the code segment rather than
wasting space in a group.
ser’s Guide and Reference

Code Generation
Struct alignment
This lets you control the boundaries for structure alignment. The
default is to align members within a structure on word boundaries
for 16-bit programs. This maximizes speed on computers with a 16-
bit bus (such as a PC-AT). The default in 32-bit DOS programs is to
align on double-word boundaries to maximize performance.

Byte: Aligns structures on byte boundaries.

Word: Aligns structures on word boundaries.

Double Word: Aligns structures on double-word boundaries. This is
the default for 32-bit DOS applications.

Quad Word: Aligns structures on boundaries that are multiples of
four words. This is the default for Win32 applications.

Target CPU
This option lets you create a compilation tailored for the instruction
set of a specific CPU.

88: Generates 16-bit code using the 8088 instruction set.

286: Generates 16-bit code using the 80286 instruction set. Programs
compiled with this option will not run on an 8088 or 8086 processor.

386: Generates code optimized for machines with an 80386 CPU.
Programs compiled with this option require an 80386, 80486, or
Pentium processor.

486: Generates code optimized for machines with an 80486 CPU.
Programs compiled with this option require a 32-bit DOS extender or
32-bit operating system, and an 80386, 80486, or Pentium CPU.

Pentium: Generates code for the Pentium instruction set.
Symantec C++ User’s Guide and Reference 16-9

16 More about Project Build Settings

16-10 Symantec C++ U
Header Files
The Header Files subpage (Figure 16-3) specifies compiler header
file options.

Precompile options
If your program uses a large header file or numerous small headers,
the compiler spends considerable time compiling the same source
code over and over again. To reduce compile time, you can
precompile header files; the compiler can load a precompiled header
faster than it can a text header file. It is especially useful to
precompile large header files that seldom change, such as
windows.h .

No headers
Disables generation and use of precompiled headers.

All headers
In most cases, using precompiled headers is convenient and fast.
The All Headers option automatically precompiles all header files
defined in the project source files into the file scph.sym . The file
scph.sym is always in the current directory or in the directory
specified as the compiler output directory.

Figure 16-3 Header Files subpage
ser’s Guide and Reference

Header Files
Setting the All Headers option causes the compiler to generate the
file scph.sym when it does not exist. If the scph.sym file does
exist, the compiler assumes it is a precompiled header. The compiler
will then test the header file to see whether all the headers it
contains are older than the header file itself. If any are newer, or if
the compiler flags have changed, a new scph.sym file is created;
otherwise, the old file is loaded as a precompiled header. Setting the
All Headers option also causes all files being compiled to use
scph.sym as their precompiled header.

The compiler writes out the precompiled header when the first line
in the top-level source file is encountered, and when that line is not
a comment or an #include statement.

To avoid problems with precompiled headers:

• Do not write any declarations that cross boundaries of
header files. Each header file should be self-contained.

• Do not write any extern “C” constructs that start in
one file and end in another.

• Do not depend on header files being included more than
once.

• Do not write any code or data definitions in header files,
only declarations.

To maximize compile speed, set the directory to a RAM disk.

There are two circumstances in which using precompiled headers is
not recommended:

• The file being compiled causes scph.sym to be
regenerated, but that file contains a subset of the header
files that other files also contain.

• Included files are wrapped in #if blocks or extern
“C” blocks. (The extern “C” statement is a non-
include statement, so the precompiled header is written
out prior to the extern “C” block.) Embed the extern
“C” blocks in the included files themselves.
Symantec C++ User’s Guide and Reference 16-11

16 More about Project Build Settings

16-12 Symantec C++ U
Specific header
Lets you select a header file to precompile individually. Type the
header file name into the textbox.

Use precompiled headers from directory
Tells the compiler to use precompiled headers from a specific
directory. In the textbox, type the name of the directory in which the
precompiled headers reside. If this directory is empty, no additional
directories, other than the current or path directories, are searched.

Include headers once
Tells the compiler to include each header file only once, even if it is
named in more than one source file. Otherwise, header files are
included whenever they are named in a source file. This option can
be used with or without precompiled headers.

Memory Models
The Memory Models subpage (Figure 16-4) specifies the memory
model to be used.

Memory model
Controls the memory model the compiler uses by specifying its size:

Figure 16-4 Memory Models subpage
ser’s Guide and Reference

Memory Models
Tiny: Tells the compiler to create a .com file active only for DOS
compilations.

Small: Generates code with near pointers for the code segment and
the data segment.

Medium: Generates code with far pointers for the code segment and
near pointers for the data segment.

Compact: Generates code with near pointers for the code segment
and far pointers for the data segment.

Large: Generates code with far pointers for both the code and data
segments.

Flat: Generates code for a Win32 compilation; that is active only for
Win32s and DOSX compilations.

Data segment
These options control the way the compiler treats the data segment
register.p.

Assume SS==DS
Causes the compiler to generate code that assumes SS equals DS.

Always reload DS
Causes the compiler to generate code that reloads DS at the
beginning of each function call.
Symantec C++ User’s Guide and Reference 16-13

16 More about Project Build Settings

16-14 Symantec C++ U
Code Optimizations
Options on the Code Optimizations subpage (Figure 16-5) control
how the compiler optimizes code.

Optimization for
These radio buttons control the type of optimization. You can
optimize for speed or space, select a custom set of optimizations, or
disable optimization.

Speed: Optimizes code for speed at the expense of program size.
The code uses all optimizations.

Space: Optimizes code for space at the expense of execution speed.
The code uses all optimizations.

Custom: Allows selection of optimizations using the Optimization
check boxes.

None: Turns off all Optimization check boxes. No optimization is
performed.

Figure 16-5 Code Optimizations subpage
ser’s Guide and Reference

Windows Prolog/Epilog
Optimizations
The Optimization check boxes control the individual optimizations.
These options relate only to the Custom radio button.

For more information on how Symantec C++ optimizes code, see the
Compiler and Tools Guide.

C++ inlining
Controls inline function expansion in C++. When you are debugging
C++ files, the presence of inline code can present considerable
problems to most symbolic debuggers. This option suppresses the
production of inline code.

Windows Prolog/Epilog
The Windows Prolog/Epilog subpage (Figure 16-6) specifies the type
of Windows prolog and epilog code that the compiler attaches to
each far function in a compilation.

The first group of radio buttons selects from predefined sets of
prolog/epilog options.

Figure 16-6 Windows Prolog/Epilog subpage
Symantec C++ User’s Guide and Reference 16-15

16 More about Project Build Settings

16-16 Symantec C++ U
Set EXE defaults
Sets options to generate prologs and epilogs for a protected-mode
Windows application, with callback functions all marked as
_export .

Set DLL defaults
Sets options to generate prologs and epilogs for a protected-mode
Windows DLL, with callback and exported functions all marked as
_export .

Real mode full prolog/epilog
Sets options to generate prologs and epilogs for a real or protected-
mode Windows application or DLL.

Real mode reduced
Sets options to generate prologs and epilogs for a real or protected-
mode Windows application or DLL with exported and callback
functions (marked with _export).

Real mode smart callbacks
Sets options to generate prologs and epilogs for a real or protected-
mode Windows application with smart callbacks. In smart callbacks,
the compiler compiles far functions with a smart prolog and epilog
that loads the data segment from the stack segment. Use smart
callbacks only with applications in which the data segment is the
same as the stack segment (DS==SS). Do not use it with DLL files.

Custom
Lets you specify a nonstandard set of prolog/epilog options.

The remaining options on the Windows prolog/epilog subpage are
discussed in the Compiler and Tools Guide.
ser’s Guide and Reference

Output
Output
The Output subpage (Figure 16-7) controls the output generated by
the compiler.

Source listing files
With this option on, the compiler creates a source listing file; its
name is that of the source file with the extension .lst . The
compiler inserts error messages and line numbers in the listing file.

Verbose
Displays source and header file names, classes, function prototypes,
and time of execution during compilation.

Macro expansions
Tells the compiler to create macro expansions in error listings.

Assembly listing (.COD)
Causes the compiler to generate a .cod file containing an assembly
language representation of the program.

Figure 16-7 Output subpage
Symantec C++ User’s Guide and Reference 16-17

16 More about Project Build Settings

16-18 Symantec C++ U
Warnings
The options on this subpage, shown in Figure 16-8, control how the
compiler produces warnings and let you enable the compiler to
generate only specific warnings.

Warnings
Determines the warning messages that are produced:

All: All warnings are produced. Turns on all warnings in the Selected
Warnings group.

Selected: Only warnings that have been checked in the Selected
Warnings area are produced.

None: No warnings are produced. Turns off all warnings in the
Selected Warnings group.

Treat warnings as errors
Causes the compiler to promote warnings to errors. Setting this
option allows you to use the error window to find warnings in the
source file.

Figure 16-8 Warnings subpage
ser’s Guide and Reference

Debug Information
Turn off error maximum
Makes the compiler continue rather than stop when its error limit is
reached. The compiler processes the entire source file and displays
all errors it has detected.

Selected warnings
Determines the warning messages that are produced. For more
information on the specific warnings, refer to the Compiler and Tools
Guide.

Debug Information
The Debug Information subpage (Figure 16-9) controls the
information the compiler places into the code for debugging. These
options specify the level of debugging, debug information, and other
conditions.

Debug information
These radio buttons select from predefined sets of debug
information options.

Full: Turns on all debug information. Use this set when the
application uses a class library or DLL.

Figure 16-9 Debug Information subpage
Symantec C++ User’s Guide and Reference 16-19

16 More about Project Build Settings

16-20 Symantec C++ U
Reduced: Turns on the most frequently needed debug information.
Use this set for most other programs.

Custom: Allows you to select the debug information to be included.

None: Turns off all debug information.

Trace prolog/epilog
Adds the user-defined function calls __trace_pro_f and
__trace_epi_f to the prolog and epilog, respectively, for each
function. The prolog function is called after the stack frame is set up;
the epilog function is called just before the stack frame is destroyed.

Line numbers
Places line numbers corresponding to the source into the code. Line
number information significantly increases the size of the object file.

Symbolic debug information
Includes symbol information for all public symbols. Symbols
significantly increase the size of the object file.

Three additional options become available when Symbolic Debug
Information is checked:

Unreferenced types: Generates symbols for unreferenced types
(for example, typedef s).

All referenced classes: Forces symbols for all classes that are
referenced in DLL files and class libraries to be generated.

Dynamic C++ types: Adds dynamic C++ class type information to
classes with virtual functions. To force the production of typing
information for a class with no virtual functions, add a dummy
function such as virtual void dummy(){} to the class
definition.

Make static functions global
Makes all static functions global. The linker then can enter the names
of these functions into the map file and place global debugging
information in the executable.
ser’s Guide and Reference

Linker
Linker
The Linker subpage (Figure 16-10) governs the overall behavior of
the linker.

Debug information
Places debugging information in the executable file. This is the
normal option for linking an executable for debugging using the
IDDE.

No default library
Causes the linker to ignore libraries specified in object files.

Case sensitive
Causes the linker to be case sensitive.

Far call translation
Causes the linker to convert intrasegment far calls to near calls.

Reorder segments
Places like segments in contiguous locations.

Figure 16-10 Linker subpage
Symantec C++ User’s Guide and Reference 16-21

16 More about Project Build Settings

16-22 Symantec C++ U
Export by ordinal
For 32-bit output, causes the linker to export symbols by ordinal. For
16-bit output, when this option is on, the name text for every
exported symbol is moved from the resident name table to the
nonresident name table.

Don’t export names
Eliminates storage of name text for symbols exported by ordinal.

Export, case sensitive
Makes the linker treat the import and export symbols as case
sensitive.

Export, uppercase
Forces the linker to convert import and export symbols to
uppercase.

DOSSEG ordering
Causes the linker to perform the special segment ordering used by
Microsoft high-level languages.

No null DOSSEG
Causes the linker not to offset the first segment by 10.

Warn if dups
Causes the linker to warn you if you have duplicate symbols in your
code.

Delete EXE/DLL on error
Deletes target executable if a link error occurs.

Create ImpDef
Forces the linker to generate a .din file, which combines export
information from your source, definition file, and options.

Fix DS
Turning this option on has the same effect as putting a FIXDS
directive in the .def file.

Keep segments in .def order
Causes the linker to keep segments in the order in which they
appear in the .def file (Windows only).
ser’s Guide and Reference

Linker
Requires Windows 3.0
Causes the linker to tag the executable as requiring Windows 3.0 or
later to run.

Requires Windows 3.1
Causes the linker to tag the executable as requiring Windows 3.1 or
later to run.

Generate import library
Directs the linker to build an import library (.lib) describing the
exported symbols available to be imported from a DLL.

Import lib page size
Sets the page size for the Generate Import Library option.

Alignment
In conventional MS-DOS executables, causes the header to be
rounded up to the specified size. In segmented .exe files, this
option governs the page size.

Base
Sets the base address of the executable.

Entry point
Specifies the program entry point for Win32 applications.
Symantec C++ User’s Guide and Reference 16-23

16 More about Project Build Settings

16-24 Symantec C++ U
Packing & Map File
The Packing & Map File subpage (Figure 16-11) controls the linker’s
output of cross-reference and map files.

Packing
This group of options controls how your target is packed.

Win pack
Packs Windows programs.

EXE pack
Compresses the executable file.

Smart linking
Enables smart linking of object files containing COMDAT records;
only referenced COMDAT records are retained.

Pack code
Causes the linker to combine code segments. The size textbox
specifies the maximum code segment size.

Figure 16-11 Packing & Map File subpage
ser’s Guide and Reference

Packing & Map File
Pack data
Causes the linker to combine data segments. The size textbox
specifies the maximum data segment size.

Map file
These options generate a file containing a list of segments, in the
order of their appearance in the module. This group of options
controls map file generation.

No map: No map file generated.

Segment map: Generates a list of segments, in the order of their
appearance in the module.

Detailed segment map: Includes more detail about segment type,
the modules that were added, the number of bytes per segment, and
where each module begins.

Map file options
These options control the contents of the map file.

Cross reference
Causes the linker to generate a cross-reference list in the map file.

Line numbers
Controls whether line-number information is contained in the map
file.

Group information
Enables output of group information.
Symantec C++ User’s Guide and Reference 16-25

16 More about Project Build Settings

16-26 Symantec C++ U
Definitions
The Definitions subpage (Figure 16-12) contains the parameters
necessary to create the .def file for an application.

Name
Defines the name of the application, which is used by Windows to
identify the application. A name is required for all Windows
applications.

Description
Contains a description of the application. This optional string is
placed in a Windows executable. It can be used for version control
or to otherwise help identify the application.

Heap size
Specifies the size of the application’s local heap. The default is 4096.
If your application frequently uses the local heap, specify a larger
heap size.

Figure 16-12 Definitions subpage
ser’s Guide and Reference

Definitions
For Windows 3.1, heap size is a single text field. For Win32s, the
field has two parts: Reserve and Commit, where Reserve is optional.
Reserve tells Win32s how much heap space to try to get for this
application. Commit specifies the amount of heap space the
application actually needs. The two fields are separated by a comma
(,). For example, 100000,4096 would specify 100000 for Reserve and
4096 for Commit.

Stack size
Defines the size, in bytes, of the executable’s stack. The default is
4096 bytes. The stack is used for storing function arguments. You
may need to increase the stack size, especially if your application
contains heavily recursive functions.

For Windows 3.1, stack size is a single text field. For Win32s, the
field has two parts: Reserve and Commit, where Reserve is optional.
Reserve tells Win32s how much stack space to try to get for this
application. Commit specifies the stack size the application actually
needs.

Stub
Specifies an optional file that defines the executable stub to be
placed at the beginning of the executable. When a user tries to run
the application from DOS, the stub is executed instead. Many
applications use the winstub.exe file supplied with the Windows
SDK. You can use one of your own executables instead.

Version
Contains optional version information that becomes part of the
executable file.

Initialize once
The DLL’s initialization routine is called only when the module is
initially loaded into memory.

Private lib
Creates a private DLL that is called.

Initialize process
The DLL’s entry point is called when a process attaches.

Terminate process
The DLL’s entry point is called when a process terminates.
Symantec C++ User’s Guide and Reference 16-27

16 More about Project Build Settings

16-28 Symantec C++ U
Initialize thread
The DLL’s entry point is called when a thread attaches.

Terminate thread
The DLL’s entry point is called when a thread terminates.

Segments
This subpage, shown in Figure 16-13, provides segment information
for the .def file.

Segment Type
This option toggles between two option sets: one for code segment,
and one for data segment.

Code Segment: Shows options for the code segment.

Data Segment: Shows options for the data segment.

Attributes
These options define the attributes for the application.

Figure 16-13 Segments subpage
ser’s Guide and Reference

Segments
Conforming
Turns on the conforming bits for the segment. This attribute can be
set for code segments only.

Discardable
Lets the system flush the segment from memory. This attribute can
be set for code segments only.

Shared
Lets multiple applications use this segment simultaneously (DLLs
only). This attribute can be set for both code and data segments.

Preload
Loads the segment when the executable file or library is loaded. This
attribute can be set for both code and data segments.

I/O privilege
Turns on the I/O privilege bit for the segment. This attribute can be
set for code segments only.

Moveable
Lets the segment be moved when memory is compacted. This
attribute can be set for both code and data segments.

Access Rights
These settings let you select access privileges for a segment.

Execute Read
Lets an executable read from or execute a segment, but not write to
a segment.

Execute Only
Lets an executable execute, but not read or write, the segment. This
attribute can be set for code segments only.

Read Write
Lets an executable read from a segment, or write to a segment, but
not execute a segment.

Read Only
Lets an executable read from a segment, but not write to or execute
the segment. This attribute can be set for data segments only.

Instance
These settings let you select the type of data segment generated.
Symantec C++ User’s Guide and Reference 16-29

16 More about Project Build Settings

16-30 Symantec C++ U
Multiple data segments
Forces the generation of multiple data segments.

Single data segment
Forces the generation of a single data segment.

Mode
These settings let you select the type of executable file generated.

Protected mode
Causes the application to run in protected mode.

Real mode
Causes the application to run in real mode.

Imports/Exports
The Imports/Exports subpage (Figure 16-14) lets you define the
names of routines in DLLs that your executable can use. It also lets
you define the names of routines that your target (which must be a
library) exports to other programs. The IMPORTS and EXPORTS
statements are placed in the .def file.

Figure 16-14 Imports/Exports subpage
ser’s Guide and Reference

Imports/Exports
Imports
This section defines the names of routines in DLLs that your
application can use.

Internal name
Contains the name by which the imported routine is called
internally. If omitted, the internal name is the same as the external
name.

External file
Contains the name of the DLL from which the routine is imported.

External name
Contains the name of the DLL routine to be imported.

Ordinal
Specifies the ordinal number in the DLL of the routine to be
imported. You can specify the ordinal or the external name, but not
both.

Add, Replace, Remove
Clicking on the Add button adds the routine to the list of imported
routines. Clicking on the Replace button uses the routine to replace
the currently selected routine in the list. Clicking on the Remove
button removes the currently selected routine from the list.

Exports
This section defines the names of routines that can be exported from
your DLL.

External name
Contains the name by which the DLL routine will be known to other
applications.

Internal name
Contains the name of the DLL routine to be exported.

Ordinal
Specifies the ordinal number by which the DLL can be referenced in
other applications. This is optional unless No name is set.
Symantec C++ User’s Guide and Reference 16-31

16 More about Project Build Settings

16-32 Symantec C++ U
Parameters
Specifies the total number of words occupied by the function’s
parameters. This option applies only to protected-mode functions
with I/O privilege.

No data
Specifies that this function does not reference any data. This option
applies only to real-mode Windows functions with I/O privilege.

No name
Specifies that the function can only be referenced by ordinal
number.

Memory resident name
Makes the function name memory resident, even though an ordinal
number is specified.

Private
Causes PRIVATE to be added to the names in your module definition
file; this directs the IMPLIB utility to ignore the EXPORTS statements.

Add, Replace, Remove
Clicking on the Add button adds the routine to the list of exported
routines. Clicking on the Replace button uses the routine to replace
the currently selected routine in the list. Clicking on the Remove
button removes the currently selected routine from the list.
ser’s Guide and Reference

Resource Compiler
Resource Compiler
The Resource Compiler subpage (Figure 16-15) contains options to
control the resource compiler.

Error maximum
Makes the resource compiler stop when its error limit is reached. If
this option is off, the resource compiler processes the entire source
file and displays all errors that have been detected.

Use predefined macros
Directs the resource compiler to use all predefined macros for the
resource file.

Generate warnings
Shows warning messages.

Verbose
Shows greater detail when compiling resources.

32-bit resources
Specifies creation of 32-bit resource files.

Figure 16-15 Resource Compiler subpage
Symantec C++ User’s Guide and Reference 16-33

16 More about Project Build Settings

16-34 Symantec C++ U
Define macros
Specifies macros that should be defined for the resource compilers.

Source file listing
Specifies the name of the output listing file to create from the .res
script.

Default hex language
Specifies the default hexadecimal language for 32-bit resources.

Code page
Specifies the code page used to convert strings in 32-bit resources to
Unicode (currently unused).

International characters
This option specifies how the resource compiler interprets 2-byte
Asian language character codes within character constants and
strings. That is, if a character code represents the first byte of a 2-
byte sequence, the second byte is not checked to see whether it is a
backslash or a closed quote. The second byte cannot be a NULL (0),
a carriage return (0x0D), or an end-of-file (0x1A).

None: Allows no 2-byte sequences.

Japanese: Signals the 2-byte sequence with a value in the range
0x81 ... 0x9F and 0xE0 ... 0xFC.

Taiwanese/Chinese: Signals the 2-byte sequence with a value in
the range 0x81 ... 0xFC.

Korean: Signals the 2-byte sequence with a value in the range
0x81 ... 0xFD.
ser’s Guide and Reference

Make
Make
The Make subpage (Figure 16-16) sets Make options for the IDDE
built-in Make.

The radio buttons at the top of the dialog box control the Make
program that will be run when the IDDE builds the project.

Use IDDE make: Use the built-in IDDE make tool.

Use external make file: Allows you to use an external Make
program.

IDDE make options
This group of options governs the IDDE Make.

Build order
Opens the Build Order dialog box (see Figure 16-17).

Link order
Opens the Link Order dialog box (see Figure 16-18).

Figure 16-16 Make subpage
Symantec C++ User’s Guide and Reference 16-35

16 More about Project Build Settings

16-36 Symantec C++ U
Track dependencies
Specifies whether or not to track dependencies (enabled by default).
More time is required to track dependencies for large projects with
many include files. The most effective way to use this option to
establish the correct dependencies is to turn it on when you first
build a project. Then turn it off, except when you change the
dependency structure (by changing #include statements, for
example).

If dependencies are tracked, the dependent files are shown in the
Project window.

Track system includes
Specifies whether to track dependencies in system include files
(disabled by default).

On error continue unrelated
Causes the IDDE Make to continue to build modules that are not
dependent on the module in which the error occurred.

Ignore errors in build
Directs the IDDE Make to ignore errors and continue to build the
target.

Multitasking
Affects the responsiveness of your system to a command to execute
another task within Windows while the project is being built.

Frequent: Causes the IDDE to frequently give up time slices so
other applications can execute faster.

Moderate: Causes the IDDE to give up some of the time to other
applications.

None: Turns off multitasking. Other applications are suspended
while the IDDE is building your project.

Netbuild
The IDDE allows the build process to be distributed among one or
more remote servers. For more information, see Appendix C, “Using
NetBuild.”

Use NetBuild
Enables distributed builds.
ser’s Guide and Reference

Make
Use remote headers
Allows the remote server to use the header files provided with
Symantec C++ on the build server. When this option is off, the build
server takes the files from the local machine.

Working directory
Specifies the working directory on the remote server.

Remote password
Specifies the password for logging on to the remote server.

Build order
The Build Order button is only enabled when you have .prj ,
.bat , or .mak files in your project. Clicking on this button opens
the Build Order dialog box, shown in Figure 16-17.

The Build Order dialog box lets you specify the stage of the build in
which you want your .prj , .bat , or .mak file executed. You do
this by selecting a file from the Build File Pool list, clicking on one of
the build steps on the right, then clicking on Add. The steps you can
select are as follows:

Step 1: Happens before any compilation takes place.

Figure 16-17 Build Order dialog box
Symantec C++ User’s Guide and Reference 16-37

16 More about Project Build Settings

16-38 Symantec C++ U
Step 3: Happens after your files have been compiled into the object
files, but before they have been linked to make the target.

Step 5: Happens after your final executable has been linked.

You can return any of the files to the Build File Pool list by selecting
the filename in one of the steps and clicking on Remove.

When you are satisfied with the build order, click OK to return to the
Make subpage.

Link order
The Link Order button opens the Link Order dialog box, shown in
Figure 16-18.

The Link Order dialog box lets you specify the order in which
libraries and object files added explicitly to the project are linked.
You do this by iteratively selecting files from the LIBs in Project or
the OBJs in Project listbox, then clicking Add to move the files to the
Link Order listbox.

You can return a file to the LIBs in Project or the OBJs in Project
listbox by selecting the filename and clicking on Remove.

Figure 16-18 Link Order dialog box
ser’s Guide and Reference

External Make
The libraries added explicitly to the project are linked before other
libraries. The object files added explicitly to the project are by
default linked after the object files generated by compiling source
files in the project. You can specify object files to be linked before
any other object files in the Prepended linker input files textbox.

When you are satisfied with the link order, click OK to return to the
Make subpage.

External Make
The options on this subpage govern the use of a make utility other
than IDDE Make. Figure 16-19 shows the External Make subpage.

Using external make
To use your own Make program:

1. Select Use External Make File.

2. Specify the .exe name of your Make program in the
Make Command Line textbox, followed by arguments, if
any. The IDDE expects the program’s directory to be in
the PATH environment variable.

Figure 16-19 External Make subpage
Symantec C++ User’s Guide and Reference 16-39

16 More about Project Build Settings

16-40 Symantec C++ U
3. If you want to change the Make’s default directory, enter
the change in the Initial Directory box. By default, this is
the directory that contains Make.

4. You can use a Windows PIF file to further customize the
way Make behaves.

The next time you use the Build or Rebuild All command, the
IDDE runs your Make program from a DOS command-line window,
which closes when Make is done.

The radio buttons at the top of the dialog box control the Make
program that will be run when the IDDE builds the project:

Use IDDE make: Use the built-in IDDE make tool.

Use external make file: Allows you to use an external Make
program.

Make command line
The Make Command Line textbox holds the .exe name of your
Make program followed by arguments, if any.

Initial directory
Use this textbox to specify the directory from which the Make utility
will run.
ser’s Guide and Reference

Librarian
Librarian
The Librarian subpage (Figure 16-20) specifies options for building a
library.

Ignore case
Directs the librarian utility to ignore case in symbols.

Do not create backup
Keeps the librarian utility from backing up the original library. When
this option is turned off, the original library is saved in a backup file.

Page size
Specifies the library page-swapping size.

Figure 16-20 Librarian subpage
Symantec C++ User’s Guide and Reference 16-41

16 More about Project Build Settings

16-42 Symantec C++ U
ser’s Guide and Reference

More about
AppExpress

17

Chap

app

ter 4, “Generating an Application Framework,” defines an
lication framework and outlines the steps for generating a

skeleton application using AppExpress. This companion reference
chapter provides further detail concerning application types,
program detail, program architecture, message maps, as well as
generating and examining source files.

Selecting an Application Type
Select Application Type from the list of steps at the upper left of the
AppExpress window. The options pane at the right contains three
groups of controls, labeled Applications, OLE Options, and Project
Options.

Figure 17-1 AppExpress application type options
Symantec C++ User’s Guide and Reference 17-1

17 More about AppExpress

17-2 Symantec C++ U
Applications
The group of Applications radio buttons contains six categories of
applications. Of these, only Quick Console does not use the MFC
library. These categories are:

• Quick Console: The kind of application generated is
determined by whether the 32-Bit Project box in the
Project Options group is checked. See the information on
the Project Option group later in this section.

• Dialog Box: This standard Windows dialog box can be
either modal or modeless and can include dialog box
controls such as push buttons, textboxes, and listboxes.

• Form or Database: This is a window with the
functionality of a dialog box enhanced with scroll bars. It
is appropriate for dialog boxes that have more than one
screen of controls.

• Single Document Interface (SDI): This application uses a
single window in which the application data is displayed.
The OLE Options group of controls is enabled if this
application type is selected.

• Multiple Document Interface (MDI): This application lets
you display more than one window of data within a
parent frame window. The OLE Options group of
controls is enabled if this application type is selected.

• OCX Control in MFC: This template is for a custom
control that is an OLE2 object.

The application types vary in the amount of functionality that
AppExpress generates as part of the skeleton program. For example,
SDI applications contain only one window, while MDI applications
contain a main window and a variable number of child windows.
ser’s Guide and Reference

Selecting an Application Type
OLE Options group
The OLE Options group is enabled only if you select the SDI or MDI
application type. The group contains four radio buttons:

• No Support: The application is not OLE-aware: it is
neither a server nor a container. This option is the
default.

• Server: The generated application acts as an OLE2 server.
An OLE2 server can create or edit data, which OLE2
containers can link to or embed.

• Container: A host application. The generated application
can contain OLE2 server data elements (OLE2 objects)
within this host application’s data.

• Server & Container: The generated application acts as
both an OLE2 server and as an OLE2 container.

Project options group
The Project Options group contains two check boxes, Include Help
and 32-Bit Project.

Checking Include Help tells AppExpress to generate the files
necessary to build a Windows Help file for the specified application
type. AppExpress creates a Help subdirectory named hlp beneath
the project directory, which contains those files. It also creates the
file makehelp.bat , which you run to compile a Windows Help file
from the files AppExpress provides.

For all application types other than Quick Console, checking the 32-
Bit Project box causes the MFC 3.0 to be used instead of the 16-bit
MFC 2.5.

For Quick Console, leaving the box unchecked results in a skeleton
WINIO program being generated. WINIO is a library that allows you
to write simple Windows programs that perform input/output using
standard C library functions (in other words, those functions
prototyped in stdio.h.). If the 32-Bit Project box is checked, a
Win32 console application is generated. Win32 console applications
can only be run under Windows NT and Windows 95 (and not under
Win32s).
Symantec C++ User’s Guide and Reference 17-3

17 More about AppExpress

17-4 Symantec C++ U
If you check the 32-Bit Project box, your application can call the
Win32 API.

Providing Miscellaneous Information
Selecting Miscellaneous in the steps list opens the Miscellaneous
options page. This page lets you provide copyright information as
well as a name for the project.

• In the first three fields, provide a company name, suffix,
and copyright year.

• In the Project Name field, type a name for the project. (This
name is also referred to as the Windows module name.)

Note
The module name is recorded in the module
definition file generated by AppExpress. It can be
changed by using the Project Settings dialog box,
opened from within the IDDE by choosing Settings
from the Project menu.

The Document/View Architecture
The MFC library provides a number of C++ classes that, when used
together, create the object-oriented structure for your application.
These are the document, view, frame window, and document
template classes. The Form or Database, SDI, and MDI application
types all use document/view architecture. This section introduces the
MFC classes that implement this program structure.

Frame window
The frame window contains views on the data used by the
application. In an SDI application, there is only one frame window,
which is derived from the MFC class CFrameWnd. In an MDI
application, there is a main frame window derived from
CMDIFrameWnd, as well as document frame windows derived from
CMDIChildWnd.

In addition to containing child view windows, the frame window
handles all window management—for example, minimizing,
maximizing, and closing the window. A standard toolbar and status
bar also are displayed in this window.
ser’s Guide and Reference

The Document/View Architecture
View
Each frame window can contain a view on the data used by the
application. A view is a C++ class derived from the class CView.
Your application interacts with the user through this view class.

In the SDI frame window, AppExpress generates a child view
window that takes up the client area of the frame window. (The
client area refers to the part of the window in which the program’s
data is displayed. It excludes the window border, caption, and
menu.) In an SDI application, this view window is given the default
class name CSDIAPPView. All display and printing of the
application’s data is done using this view window and its class. The
user’s manipulation of the data is also done through the view.

Document
A document is a C++ class, derived from CDocument, that represents
the data in your application. For example, a standard Windows
application has a File menu that is a variant of the one shown in
Figure 17-2.

When you choose Open from this menu, you are telling the
program to open a document.

Note
The word document refers to whatever type of data
is used by the application. It does not necessarily
mean a text-based word processing document.

Figure 17-2 Standard Windows file menu
Symantec C++ User’s Guide and Reference 17-5

17 More about AppExpress

17-6 Symantec C++ U
As the developer of the application, you write code in a CDocument-
derived class to handle the operations on the File menu. An
example of a skeleton CDocument-derived class follows.

class CSDIAPPDoc : public CDocument
{
protected: // create from serialization only

CSDIAPPDoc();
DECLARE_DYNCREATE(CSDIAPPDoc)

// Attributes
public:
// Operations
public:
// Implementation
public:

virtual ~CSDIAPPDoc();
virtual void Serialize(CArchive& ar);

#ifdef _DEBUG
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif
};

Notice that no member variables are included with this class. It is up
to you as the developer to add whatever data you need for your
application.

In the example above, a Serialize method is included in the
Implementation section of the class definition. This method,
inherited from the base class, CDocument, performs object storage
and retrieval to and from a disk file. In fact, the framework generated
by AppExpress already handles the File Open, File Save, and File
Save As operations by automatically calling the Serialize method
in your CDocument-derived class. You can use the Serialize
method to implement object persistence—the ability to preserve the
complete state of objects across multiple executions of the program.

When you add your own member variables to this class, you should
also override the Serialize method to read and write the added
variables.

Pulling it all together: the document template
Creating and managing an application’s frame window, views, and
documents is the job of another C++ class, derived from the
CDocTemplate class. In an SDI application, the CSingleDocTemplate
class is used; in an MDI application, the CMultiDocTemplate class is
used.
ser’s Guide and Reference

More about Message Maps
For more information, refer to the Microsoft Foundation Class
Library Reference.

More about Message Maps
This section outlines the purpose of message maps and identifies the
different parts of a message.

The rationale for maps
Using message maps saves you development time. The reason for
this productivity improvement lies in the event-driven nature of
Windows applications.

As a user of a Windows application clicks on buttons, selects menus,
drags the mouse to highlight text, or performs any other mouse or
keyboard action, the application is notified of this action through a
Windows message. This message contains pertinent contextual
information such as the screen coordinates at which the mouse was
clicked, or an identifier indicating the button that was clicked.

The application developer decides which messages the application
should respond to and how. If the developer decides not to write
code to handle a particular message, the message can still be passed
back to Windows to perform default processing.

If you write a Windows application using the Windows SDK, these
decisions are most likely implemented as a switch statement in the
main window procedure (usually referred to as a WndProc). For
example, your window procedure might look like this:
Symantec C++ User’s Guide and Reference 17-7

17 More about AppExpress

17-8 Symantec C++ U
LRESULT CALLBACK WndProc (HWND hwnd, UINT
message, WPARAM wParam, LPARAM lParam)
{

switch (message) {
case WM_PAINT:

PAINTSTRUCT ps;
BeginPaint(hwnd, &ps);
MyPaintProc(hwnd, ps.hdc);
EndPaint(hwnd, &ps);
return(0);

case WM_CREATE:
hmenu = GetSystemMenu(hwnd, FALSE);
AppendMenu(hmenu, MF_SEPARATOR, 0,

(LPSTR) NULL);
AppendMenu(hmenu, MF_STRING, IDM_ABOUT,

"About...");
break;

case WM_DESTROY:
PostQuitMessage(0);
return(0);

}
return DefWindowProc(hwnd, message, wParam,

 lParam);
}

If your application must respond to many types of messages, the
window procedure can get quite large and become difficult to
maintain. One of the advantages of the MFC library is the use of
message maps, which drastically reduce the amount of code
required to process messages.

Components of the message map
A message map is composed of the three components described in
this section.

BEGIN_MESSAGE_MAP, END_MESSAGE_MAP macros
All message maps must begin and end with these macros. At run-
time, the expanded macro sets up the message mapping between
events and the code to handle the events.

ClassExpress-specific comment sections
AppExpress and ClassExpress add special-purpose comments to the
message map so that ClassExpress knows where to add or remove
mapping macros. Because ClassExpress provides an easy-to-use
interface to your C++ class mappings, you should not manually edit
the comments or code in a message map.
ser’s Guide and Reference

Generating and Examining the Source Files
Message-mapping macros
If a C++ class has a method (that is, a class member function) to
respond to a message, ClassExpress writes a message-mapping
macro for that message in the class’s message map. This macro
begins with the prefix ON_, usually followed by the macro name for
the Windows message. The mapping macro takes two parameters:

• The message identifier.

• The method that is called when the message event
occurs at run-time.

For example:

ON_COMMAND(ID_FILE_PRINT,
 CView::OnFilePrint)

This macro sets up a linkage between the Windows
message WM_COMMAND and the method OnFilePrint .
This method is only called, however, if the WM_COMMAND
parameter (in this case, the wParam) is equal to
ID_FILE_PRINT . This mapping macro is equivalent to
the following case statement in a window procedure:

case WM_COMMAND:
if (wParam == ID_FILE_FORMAT)

 CView::OnFilePrint ();

Having the Express tools generate message maps lets
you concentrate on the specific function of the
application without having to worry about syntactical
issues.

Generating and Examining the Source Files
Generating the source files of the application framework is as easy as
clicking on a button. After the files are generated, you may want to
examine the header and implementation files. AppExpress typically
generates one header and one implementation file for each class. (An
exception is the CAboutDlg class, which shares files with the
application class.) Examining a few generated files in the IDDE,
setting breakpoints on methods, and tracing through their code will
help you understand the internal workings of the frameworks that
Symantec C++ User’s Guide and Reference 17-9

17 More about AppExpress

17-10 Symantec C++ U
AppExpress generates. At that point you will then be ready to edit
the code in order to enhance it as needed.

To generate and examine sample source files:

1. Launch AppExpress from the IDDE Tools menu, and
make all the selections necessary to create an SDI
application. When you click on Finish, AppExpress
generates all the source files for this skeleton program.
When it is done, AppExpress gives control to the IDDE
(with the new project open), and then closes.

2. Open the Project window in the IDDE by clicking the
Project View icon and dragging it onto the desktop, or by
pressing Ctrl+Shift+P.

3. Double-click on the filename mainfrm.h . A Source
window opens containing the header file mainfrm.h .
(For more information on Source windows, see
Chapter 2, “Introducing the IDDE.”)

This file, which AppExpress generated, contains the definition of the
class CMainFrame. It is reproduced in its entirety below.

// mainfrm.h : interface of the CMainFrame class
//
// Copyright (c) XYZ Corporation, 1994. All Rights Reserved.
//
//
class CMainFrame : public CFrameWnd
{
protected: // create from serialization only

CMainFrame();
DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:
// Operations
public:
// Implementation
public:

virtual ~CMainFrame();
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif
protected: // control bar embedded members

CStatusBar m_wndStatusBar;
CToolBar m_wndToolBar;

// Generated message map functions
protected:

//{{AFX_MSG(CMainFrame)
afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);

// ClassExpress will add and remove member functions here.
// DO NOT EDIT these blocks of generated code !

//}}AFX_MSG
DECLARE_MESSAGE_MAP()

};
ser’s Guide and Reference

Generating and Examining the Source Files
The file contains:

• A file header that uses the company name, suffix, and
copyright year that you specified in AppExpress

• The CMainFrame class declaration

In the class declaration, notice that the status bar and toolbar are
represented by class member variables, each of which is an instance
of yet another C++ class. When you write code to manipulate the
toolbar and status bar, you reference these member variables.

In the protected section of the class declaration is a prototype for a
function that is called as part of the class’s message map. As
indicated, you should not edit the code in this section because it is
reserved for ClassExpress.

AppExpress also generates a .cpp , or implementation, file for the
CMainFrame class. This file has the same base name, mainfrm , as
the class header file, but has the .cpp extension. To examine
mainfrm.cpp , open this file in an IDDE Source window. This
implementation file contains the following components:

• A file header.

• Preprocessor include statements for the required header
files.

• A declaration of the CMainFrame message map
containing a single entry (for the Windows WM_CREATE
message).

• Static array data for initialization of the toolbar and status
bar.

• The definitions of the CMainFrame constructor and
destructor functions. Notice the comment in the
constructor indicating where to add member initialization
code. You may edit these functions to insert initialization
and shutdown code for object instantiation.
Symantec C++ User’s Guide and Reference 17-11

17 More about AppExpress

17-12 Symantec C++ U
• The definition of the class’s method, OnCreate , for
handling WM_CREATE messages.

• The definitions of two functions—AssertValid and
Dump—that may be used during debugging.

• A final comment indicating where ClassExpress will add
stub methods for new entries in the CMainFrame
message map.

The next chapter discusses capabilities of ClassExpress, one of the
tools (along with the Resource Studio) that you can use to enhance
an application generated by AppExpress.
ser’s Guide and Reference

 More about
ClassExpress

18

C hap

outl

ter 4 defined the concept of an application framework and
ined the steps for building on your skeleton application using

ClassExpress. This companion reference chapter provides more
detail about using ClassExpress, including:

• Deriving a class to handle user interface events in your
program

• Working with Dialog Data Exchange (DDX) and Dialog
Data Validation (DDV)

• Enabling a C++ class as an OLE2 automation server or
client

• Deriving a C++ class from an existing Visual Basic
custom control (VBX)

Deriving a Class to Handle User Interface Events
With ClassExpress, you can derive a new class designed to handle
user interface events such as menu selections and button clicks
directly from a Microsoft Foundation Class (MFC) library class.
Suppose, for example, that you want to add a new dialog box to
your application. To derive a class from the CDialog class using
ClassExpress, follow these steps:

1. Create an application framework for a standard SDI
program using AppExpress (for details, see Chapter 4,
“Generating an Application Framework”).

2. Use ResourceStudio to create a new dialog box resource
(see Chapter 7, “Adding Look and Feel with Resources”).

3. Launch ClassExpress from ResourceStudio or from the
IDDE’s Tools menu.
Symantec C++ User’s Guide and Reference 18-1

18 More about ClassExpress

18-2 Symantec C++ U
4. Add a new class to your program by clicking on the Add
Class button. (Follow the instructions in Chapter 4,
“Generating an Application Framework.”) Be sure to
derive the new class from the Dialog class type.

In ClassExpress, all of the base classes from which you
derive new classes are themselves derived from the MFC
class CCmdTarget. The MFC Library Reference defines
CCmdTarget as the base class for the message map
architecture. Any class derived from CCmdTarget inherits
the ability to respond to user interface events such as
menu and toolbar selections and dialog box actions.

5. In the ClassExpress main window, verify that your class
has been created by browsing through the Class drop-
down list.

6. Select the new class name from the Class list. Note that
the list of Control IDs and Windows messages for your
derived dialog box class is different from the list for non-
dialog classes.

Note
ClassExpress filters out the Control IDs and
Windows messages that do not apply for the
selected class name. For example, dialog box
classes can handle the WM_INITDIALOG message,
but this message is not handled by any class derived
from CFrameWnd.

The ability to add new classes that derive specialized message-
handling functionality from the base MFC classes is one of the
benefits of using ClassExpress. The following material summarizes
the type of functionality that a new class inherits if it is derived from
CCmdTarget. For more information on any of these base classes,
refer to the Microsoft Foundation Class Library Reference.

• CmdTarget: The base class for all MFC classes that offer
support for Windows message handling. You probably
will not derive a new class directly from CmdTarget;
instead, use the other base classes in this list.
ser’s Guide and Reference

Deriving a Class to Handle User Interface Events
• Dialog: This class implements dialog boxes, either modal
or modeless. It usually is associated with a dialog box
resource template created in ResourceStudio. Member
variables of this class typically are mapped to fields or
controls in the dialog box. For details on how this
mapping is established, see the next section, “Working
with Data Transfer: DDX and DDV.”

• Document: The application’s data is represented by the
document class. The data can be anything the
programmer chooses. All file input and output should be
handled within the document class.

• FormView: A class of views that has built-in support for
scrolling and for child controls. FormViews typically are
combined with a dialog box resource template. One way
in which the FormView class differs from the Dialog class
is its added support for scrolling.

• FrameWnd: The main window class for single document
interface (SDI) applications.

• MDIChildWnd: The child document window class for
multiple document interface (MDI) applications.

• ScrollView: A class of view window that supports
scrolling.

• View: The base class that provides the connection
between the document class representing the program
data and the user interface to that data.

• Wnd: The base class for any window, including dialog
boxes, frame windows, views, and dialog box controls.
Because this class is used to derive many of the other
classes listed here, choose Wnd as a base for a new class
if other choices do not satisfy your programming
requirements.

• Splitter: This special type of window can contain
multiple panes. A pane is usually a window that is
associated with a View-derived class in the application.
Symantec C++ User’s Guide and Reference 18-3

18 More about ClassExpress

18-4 Symantec C++ U
Working with Data Transfer: DDX and DDV
The previous section discussed the architecture classes that you use
to build an object-oriented Windows program with the MFC library.
The application, document, view, template, and frame window
objects are the key components of a standard Windows, MFC-based
application.

This section describes MFC library support for data transfer between
dialog boxes or other windows and your C++ objects that store that
data. This is referred to as Dialog Data Exchange (DDX) and Dialog
Data Validation (DDV). You use the Data Transfer options of
ClassExpress to bind class member variables to dialog box or
window controls.

Note
Data transfer using DDX/DDV can be applied to
any window that is derived from the MFC base
class, CWnd. It is not restricted to dialog boxes
derived from CDialog.

Dialog Data Exchange with Windows 95 Common
Controls is also supported.

Implementing Dialog Data Exchange (DDX) using
ClassExpress
To implement DDX using ClassExpress, use the following steps.
Before performing these steps, generate a dialog box application
with AppExpress, then:

1. Add a few edit controls to your skeleton dialog box
using ResourceStudio.

2. Launch ClassExpress from ResourceStudio or from the
IDDE’s Tools menu. ClassExpress loads the project and
displays the Message Maps options.

3. In the upper-left listbox, click on Data Transfer. From the
Class drop-down list, select the CMainDialog class.
ser’s Guide and Reference

Working with Data Transfer: DDX and DDV
The ClassExpress window should look similar to that
shown in Figure 18-1.

4. Click on the Add Variable button. The Add Member
Variable dialog box shown in Figure 18-2 opens.

5. From the Control ID drop-down list, select a dialog box
control that you want to map to a class member variable.

6. Edit the Member Variable Name to specify the name of a
variable to be mapped to the selected Control ID. The
variable does not have to exist in the class. (ClassExpress
adds it automatically to the class for you.)

Figure 18-1 Data Transfer page in ClassExpress

Figure 18-2 Add Member Variable dialog box
Symantec C++ User’s Guide and Reference 18-5

18 More about ClassExpress

18-6 Symantec C++ U
Note
Nonstatic class member variable names are usually
prefixed with m_ for easy identification; however,
you are not required to follow this convention.

7. For DDX Type, select Control to map the control ID and
variable name to a control class (such as CButton or
CEdit). Select Value to map to a CString or to a numeric
type.

8. Select a Variable Type for this member variable from the
Variable Type drop-down box. The available types
depend on the type of control being mapped and the
DDX Type option.

9. If you selected Value from the Type radio buttons, one
or two additional fields are displayed along the bottom
of the dialog box. If the added member variable is of a
numerical variable type, two fields are displayed, which
allow you to set the minimum and maximum ranges for
the variable’s value. If the variable type is CString, then
only one field is displayed, in which you specify the
maximum number of characters that the CString can
contain. (You cannot specify a minimum number of
characters.)

Figure 18-3 shows an example using a CString
variable type.

Figure 18-3 Adding a CString member variable
ser’s Guide and Reference

Working with Data Transfer: DDX and DDV
10. Click OK. You are now back in the ClassExpress
window, and the member variable you just added is
displayed in the spreadsheet. If you added minimum or
maximum values for your member variable, a dialog data
validation function name is displayed in the DDV type
field.

Understanding data transfer at the source code level
The procedure in the preceding section instructs ClassExpress to
establish a link between your CMainDialog class and a control within
a dialog box. In the implementation file maindlg.cpp are calls to
virtual functions that CMainDialog inherits from other MFC classes.
These functions perform the dialog data exchange and validation
(DDX/DDV) for your program.

This section explores the source code generated by ClassExpress and
explains the implementation of data transfer—the first step in how
DDX functions bind member variables to dialog box objects to
transfer data between the variables and the controls. Next, the
validation of values entered into dialog box controls is explained.
The third section describes how data transfer functions are invoked
by the UpdateData function.

Dialog Data Exchange (DDX)
To implement DDX, follow these steps:

1. Select Open from the IDDE’s Project menu to open the
dialog box project you created earlier.

2. Open the maindlg.cpp file in a Source window. Either
double-click on maindlg.cpp in the Project window or
open an empty Source window, then open the source
file using the Open command in the File menu.

3. From the Edit menu, choose Find and search for
DoDataExchange . Look at the definition for the
method CMainDialog::DoDataExchange .
ClassExpress has overridden the CWnd method
DoDataExchange in your CMainDialog class. A sample
implementation of DoDataExchange follows.
Symantec C++ User’s Guide and Reference 18-7

18 More about ClassExpress

18-8 Symantec C++ U
void
CMainDialog::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CMainDialog)
DDX_Control(pDX, IDABOUT, m_About);
DDX_Control(pDX, IDOK, m_OKButn);
DDX_Control(pDX, IDCANCEL, m_CancelButn);
DDX_Control(pDX, IDHELP, m_Help);
//}}AFX_DATA_MAP

}

DDX lets you copy data easily from class member variables to dialog
box controls, then from the controls back to the member variables.
This is accomplished by implementing an override for the
CWnd::DoDataExchange method in your dialog box class. For
each control that is mapped to a member variable, ClassExpress
generates a call to a DDX function. There are four DDX function
calls in the code sample shown above.

DDX functions take the form:

DDX_xxx(pDX, nIDC, Data);

where:

• pDX is a pointer to a CDataExchange object. This
object contains context information such as the dialog
box instance and whether the data exchange is from the
member variable to the control or vice versa.

• nIDC is the dialog box control ID.

• Data is the member variable in your dialog class.

Note
DDX functions that exchange data with Visual Basic
custom controls (VBXs) take an additional
parameter, nPropIndex—the property index being
exchanged. This parameter is shown before the
Data parameter.
ser’s Guide and Reference

Working with Data Transfer: DDX and DDV
The preceding sections cover how ClassExpress prompts you for
new member variables, then generates code that performs automatic
data exchange between those variables and their respective dialog
box or window controls. The next section describes how to enhance
data exchange by using data validation.

Dialog Data Validation (DDV)
When adding a new variable using the Data Transfer options in
ClassExpress, you can define minimum and maximum values for
numeric variables and maximum lengths for CString variables. This is
illustrated in Figure 18-4 below.

In this example, the member variable m_PayTo is defined as an
integer and is limited to values between 100 and 5000. This variable
is bound to a dialog box edit control identified by IDC_PAYTO. The
user of the application is not allowed to enter a value in that control
that is outside the minimum and maximum bounds.

You do not have to write a single line of code to enforce this rule.
The DDV functions in the MFC library do this for you. After adding
the variable m_PayTo, as shown earlier, and clicking Close in
ClassExpress’s main window, ClassExpress writes the following lines
to the DoDataExchange method of your dialog box class:

DDX_Text(pDX, IDC_PAYTO, m_PayTo);
DDV_MinMaxLong(pDX, m_PayTo, 100, 5000);

The first line binds the edit control to your m_PayTo member
variable. This uses a DDX function, as discussed earlier in this
chapter. The second line is the DDV function that limits values in the
textbox control to between 100 and 5000.

Figure 18-4 Adding a numeric member variable
Symantec C++ User’s Guide and Reference 18-9

18 More about ClassExpress

18-10 Symantec C++ U
Note
For each member variable, the DDV function call
should immediately follow the DDX function call in
your DoDataExchange function. This is a
requirement of the application framework and is
enforced when ClassExpress writes new DDX/DDV
function calls to the source code file.

DDV functions take the following form:

DDV_xxx(pDX, Data, ...);

where:

• pDX is a pointer to a CDataExchange object. This
object contains context information such as the dialog
box instance and whether the data exchange is from the
member variable to the control or vice versa.

• Data is the member variable in your dialog class.

• ... indicates the remaining arguments: minimum and
maximum values for numerical variables, and maximum
number of characters for strings.

Calling UpdateData
Your dialog class’s DoDataExchange method is called by another
CWnd method, UpdateData , whose prototype follows:

BOOL UpdateData(BOOL fSaveOrValidate);

If the parameter to UpdateData is FALSE, then the function
updates the dialog box controls with data from class member
variables that have been mapped to the controls. If the parameter is
TRUE, then the member variables are updated with data from the
controls and validated.

You call UpdateData from the places in your program at which
you want to exchange data with the dialog box. UpdateData is
called for you automatically in only one place in the dialog
initialization.
ser’s Guide and Reference

Making Your Application an OLE Automation Server
In response to the WM_INITDIALOG message, the
CDialog::OnInitDialog method calls UpdateData with a
parameter equal to FALSE, indicating that the controls are being set.
Initialize the values of a dialog class’s member variables in your
OnInitDialog method. For example:

BOOL CMainDialog::OnInitDialog()
{

m_ColorIsRedCheckBox = TRUE;
m_Filter = FILTER_NONE;
CDialog::OnInitDialog();

}

Here two member variables, m_Color and m_Filter , are set to
initial values. When the CDialog::OnInitDialog method is
called, it uses those values to set the state of the dialog box controls
mapped to these member variables.

Making Your Application an OLE Automation
Server
This section covers the following topics:

• The definition of an OLE automation server

• The difference between creating an automation server in
ClassExpress and a standard OLE server in AppExpress

• The mechanics of creating an OLE automation server
using ClassExpress

• The source code that ClassExpress generates to
implement OLE automation

Note
Use of the acronym OLE (object linking and
embedding) in this section refers to version 2 of
OLE, which includes automation support.
Symantec C++ User’s Guide and Reference 18-11

18 More about ClassExpress

18-12 Symantec C++ U
What is an OLE automation server?
OLE automation is an architecture that allows programs to
manipulate objects within other applications. The application that
defines the objects is called the automation server. Any application
that uses OLE to manipulate another application’s objects is called an
automation client. For example, Microsoft Excel is an automation
server, and Microsoft Visual Basic is an automation client. From
within Visual Basic, you can write a program that loads an Excel
spreadsheet, runs Excel macros, and saves the spreadsheet.

OLE automation server vs. OLE server
OLE automation is an extension of the original object linking and
embedding technology that originated in version 1 of OLE. The
linking and embedding features determine how data from one
application is used in another. For example, you can embed a
spreadsheet document within a word processing document, or link a
word processing document to a spreadsheet document that exists in
a file.

Note
An embedded object’s data is saved as part of the
client application’s data. A linked object’s data is
saved independently of the client’s data; the client’s
data contains a reference to the filename of the
linked data.

In these examples, the application that is the container for the
spreadsheet is called an OLE client or a container application. The
application that originally created the spreadsheet and that is used to
edit the spreadsheet is called the OLE server application. The server
application is responsible for creating and maintaining data objects
embedded in or linked to another application.

When you create an OLE server application with AppExpress, you
are making it possible for your application’s data to be embedded in
or linked to another application’s data.

OLE automation was introduced in the second version of the OLE
technology. Automation has nothing to do with embedding or
linking to data objects. It is used to manipulate objects that an OLE
automation server has created.
ser’s Guide and Reference

Making Your Application an OLE Automation Server
Using OLE automation to manipulate an object allows you to do
some or all of the following:

• Query and change the properties of an object
• Call functions that are defined in the object
• Be notified when an object triggers a specific event

Although an OLE server might provide embedding, linking, and
automation support, all three options do not have to be provided.
For example, you could create an automation server that only
performs mathematical calculations, has no user interface, and is
accessible only by function calls through the OLE automation
interface. In this case, you only need an OLE automation server.
Linking and embedding technology, which is packaged in a standard
OLE server, is not required.

Enabling your application to be an OLE automation
server
This section assumes that you have generated a sample MFC-based
application framework with AppExpress. You use that framework in
this section.

To enable your application to be an OLE automation server:

1. With the project containing your sample application
framework loaded in the IDDE, launch ClassExpress by
choosing it from the Tools menu in the IDDE’s main
window.

2. To act as an OLE automation server, your application
needs a C++ class that defines an automation object. In
ClassExpress, you take care of this by adding a class.
Click on the Add Class button.

3. Select a Class Type. This specifies the MFC class from
which your new class is derived.

4. Type the name of the class in the New Class Name
textbox.

5. Check the OLE automation box. If your class is derived
from CCmd Target or CWnd, the Creatable check box
and the External Name textbox become visible.
Symantec C++ User’s Guide and Reference 18-13

18 More about ClassExpress

18-14 Symantec C++ U
6. For CCmdTarget- and CWnd-derived classes, if you want
OLE client applications to be able to create instances of
your OLE automation object, check the Creatable box as
well.

7. For CCmdTarget- and CWnd-derived classes, enter an
External Name that will be used by OLE automation
client applications to identify your automation object.

8. Click OK. At this point, ClassExpress generates the new
class in your project’s source code and reports that the
classes were generated correctly. You are returned to the
main ClassExpress window.

Completing these steps creates the basic source code structure for
your OLE automation class. However, you may also want to take
advantage of ClassExpress’s ability to add functions and properties to
your class that will be exposed by OLE automation.

Adding exposed functions to an automation server class
First, select the class from the Class Name drop-down list. To add a
function, follow these steps:

1. Click the Add Function button on the Automation Server
page of ClassExpress. The Add Function dialog box
opens.

2. In the External Name textbox of Add Function, type the
name by which automation clients will refer to the new
function. As you type, the Internal Name textbox mirrors
the name you are entering.

3. If you want your new function to have an Internal Name
different from its External Name, type the desired
Internal Name in that textbox. The Internal Name is the
name the function will have in your source code.

4. Select the function’s Return Type from the drop-down list
with that label. In addition to the standard types void ,
short , long , float , and double , this list contains the
OLE types CY, DATE, LPDISPATCH, SCODE, BOOL,
VARIANT, and LPUNKNOWN. If you are unfamiliar with
these latter types, consult the OLE2 Programmer’s
Reference for their definitions.
ser’s Guide and Reference

Making Your Application an OLE Automation Server
5. If your function takes arguments, add them one at a time
by clicking on the Add button at the bottom of the
Parameters List listbox. The Add Parameter dialog box
that is displayed lets you specify the Name and Type of a
parameter. Enter the parameter’s name in the Name
textbox. Select its type from the Type drop-down list.
(The Type list contains more OLE types. See the OLE2
Programmer’s Reference for details.) Click OK. You are
returned to the Add Function dialog box, in which the
parameter you just specified is displayed in the
Parameters List listbox.

Follow the procedure just described to add any other
parameters the function requires.

6. Click OK in the Add Function dialog box. You are
returned to the Automation Server page of ClassExpress.
The function you just created is added to the Name
listbox, and is referred to using its external name. When
this function is selected in the Name listbox, the
Implementation listbox displays the prototype of the
function that ClassExpress generates to implement it.

Adding properties to an automation server class
First, select the class from the Class Name drop-down list. To add a
property, follow these steps:

1. Click the Add Property button on the Automation Server
page of ClassExpress. The Add Property dialog box
opens.

2. Select one of the radio buttons to the right of the
Implementation label. If you want to grant automation
clients read-only access to the property you are adding,
select Variable. If you want to grant read/write access to
the property, select Get/Set Function.

3. In the External textbox, type the name by which
automation clients will refer to this property.
Symantec C++ User’s Guide and Reference 18-15

18 More about ClassExpress

18-16 Symantec C++ U
As you type, the values of the Get Function and Set
Function fields are automatically filled in using the
external name extname you specify. If you are creating a
read-only property, it will be implemented as a member
variable in your automation class. The Get Function
textbox will contain the proposed name of that variable,
m_extname. If you are creating a read/write property, it
will be implemented by a pair of member functions—a
Get and a Set function—in your automation class. The
Get Function and Set Function textboxes will contain the
proposed names of those functions, Get extname and
Set extname.

4. Select the Type of the property from the drop-down list
with that label. In addition to the standard types short ,
long , float , and double , this list contains the OLE
types CY, DATE, LPDISPATCH, SCODE, BOOL,
VARIANT, and LPUNKNOWN. If you are unfamiliar with
these latter types, consult the OLE2 Programmer’s
Reference for their definitions.

5. If you want, change the names of the Get and Set
Function.

6. Click OK in the Add Property dialog box. You are
returned to the Automation Server page of ClassExpress.
The property you just created is added to the Name
listbox and is referred to using its external name. When
this item is selected in the Name listbox, the
Implementation listbox displays the member variable or
the pair of functions that ClassExpress generates to
implement the property.

OLE automation server source code
This section examines some of the source code generated by
ClassExpress that enables an application to be an OLE automation
server.

As explained in the previous section, you create a new class using
ClassExpress and indicate that the class should support OLE
automation. When the source code is generated, the constructor for
your new class contains the following code:
ser’s Guide and Reference

Making Your Application an OLE Automation Server
EnableAutomation();
// To keep the application running as long as
// an OLE automation
// object is active, the constructor calls
// AfxOleLockApp.
AfxOleLockApp();

OLE automation is first enabled for this object using the MFC
function EnableAutomation . This function should only be called
if there is a dispatch map declared for the class (discussed in more
detail below). If your new class objects are creatable by other
applications, then the MFC function AfxOleLockApp is called in
your constructor.

This function increments a global count of the number of times this
object has been activated by OLE clients. It is the MFC library’s way
of ensuring that an object is not destroyed by one OLE client, if it is
in use by another client. In the destructor for your class,
ClassExpress has written a call to the function AfxOleUnlockApp ,
which decrements the global count for this object.

ClassExpress also creates a new macro structure called a dispatch
map, as shown in the following example:

BEGIN_DISPATCH_MAP(COLEAutoObject, CCmdTarget)
//{{AFX_DISPATCH_MAP(COLEAutoObject)

// NOTE - the ClassExpress will add and
// remove mapping macros here.

//}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

As you can see, a dispatch map is similar to a message map, the MFC
library macro for routing Windows messages to your class methods.
Like message maps, you do not edit the dispatch map directly;
AppExpress and ClassExpress do that for you. The dispatch map is a
macro that generates dispatch table information used by the MFC
library’s OLE classes to route automation requests.
Symantec C++ User’s Guide and Reference 18-17

18 More about ClassExpress

18-18 Symantec C++ U
In addition to the OLE initialization code in the constructor and the
dispatch map, ClassExpress optionally writes the following macro to
your class implementation file (.cpp):

IMPLEMENT_OLECREATE(COLEAutoObject,"MYOBJ",
 0xd73cfd60, 0x3cea, 0x101b, 0x80, 0x60,
 0x4, 0x2, 0x1c, 0x0, 0x94, 0x2)

This macro is written if you selected the Creatable check box when
you added the new class in ClassExpress. The macro allows your
OLE automation object, as defined by your new C++ class, to be
created dynamically by an OLE client application. If you do not have
this macro, your automation object would have to be created by
your application before any OLE client could manipulate it using the
automation interface.

The IMPLEMENT_OLECREATE macro takes these arguments:

• The new class name
• The external name of the object
• The components of the class’s OLE class ID

The last parameters, the components of the OLE class ID, together
represent a 128-bit value that uniquely defines the OLE object within
Windows.

Another source code file created by ClassExpress has a filename
consisting of the project name with the extension .odl . This file
contains the Object Description Language implementation for your
automation object class. You run the utility program
mktyplib.exe , passing the .odl file as an argument. The result is
a type library file with an extension of .tlb .

The type library file is used by OLE automation clients to query the
objects, properties, and functions exposed by your application.

This section has given you a view of the source code generated for
an OLE automation server. OLE automation has many more facets
that you should explore. Refer to the Microsoft Foundation Class
Library Reference and the OLE2 Programmer’s Reference for
additional details.
ser’s Guide and Reference

Making Your Application an OLE2 Automation Client
Making Your Application an OLE2 Automation
Client
The Automation Client selection of ClassExpress lets you make an
application an OLE2 automation client for type libraries that export
an OLE2 automation interface. ClassExpress creates a C++ class in
your program that acts as an interface to the type library class.

This section uses the OLE2 sample type library hello.tlb , found
in samples\ole16\hello below your Symantec C++ installation
directory. If you do not have this sample file installed, you can select
any other type library file that exports an OLE2 automation interface.
Otherwise, you should install the OLE2 samples.

To make your application an OLE2 automation client:

1. Launch ClassExpress and, if necessary, open a project.
For this example, the application type of the project does
not matter.

2. Select Automation Client from the list at the upper left of
the ClassExpress window.

3. Click the “...” button to the right of the Type Library File
field. The Open dialog box is displayed.

Note
This dialog box has filtered out all filenames that do
not end with .tlb or .olb . These extensions are
used for OLE type library files.

4. Browse to the type library file
samples\ole16\hello\hello.tlb within the
Symantec C++ installation directory.

5. Click OK in the Open dialog box. The type library file
should now be displayed in the Type Library File field in
the ClassExpress window.
Symantec C++ User’s Guide and Reference 18-19

18 More about ClassExpress

18-20 Symantec C++ U
Note
Class names representing exported OLE2
automation interfaces in the type library are
displayed in the Class list.

6. Select _DHello from the Class list.

7. ClassExpress fills in the New Header File and New
Implementation File fields with the suggested file names
for the new C++ class that will be generated in your
framework.

8. Click on the Generate button. ClassExpress creates the
header and implementation file for your new class.

The C++ class _DHello that was generated by ClassExpress
represents the client OLE automation interface to the _DHello type
defined in hello.tlb . This class provides a number of methods
that simplify the processes of attaching to and detaching from an
OLE automation dispatch connection. ClassExpress generates
additional methods that simplify the interface to
IDispatch::Invoke . If you are not familiar with the OLE
automation architecture, refer to the OLE2 Programmer’s Reference.

Creating a C++ Wrapper Class for an Existing
VBX
The VBXExpress section of ClassExpress lets you incorporate VBX
controls into an MFC application. ClassExpress makes it easy to use a
VBX by generating a C++ wrapper class through which you can
directly program the VBX. The wrapper class makes use of the MFC
base class CVBControl, which provides access to VBX properties and
events.

You can use VBXExpress with any 16-bit MFC application. (The
restriction arises because VBXs themselves are inherently 16-bit.)
Follow these steps to create a wrapper class for a VBX and add it to
the class hierarchy of a project:

1. Launch ClassExpress—either from the IDDE or
standalone. If you launch ClassExpress standalone,
specify your project in the Open dialog box.
ser’s Guide and Reference

Summary
2. Select VBXExpress from the list at the upper left of the
ClassExpress window.

3. The control labeled VBX File displays the name of the
currently selected VBX file. Click the button labeled “...”,
to the right of the control. An Open dialog box is
displayed. Select a VBX file and click OK.

VBX File displays the name of the file selected.

ClassExpress examines the VBX file to determine the
name and capabilities (events and properties supported)
of every VBX control contained in the file. (There can be
more than one.) The drop-down list labeled VBX
contains the names of all VBXs in the file. The
capabilities of the control selected from this list are
displayed in the Property and Event list.

4. In the textbox labeled ClassName, specify the name of
the C++ wrapper class that will be generated for the
currently selected VBX control. In the textboxes labeled
Header File, specify the names of the C++ files that will
contain the definition and implementation of the class.
Default names are provided in all three fields; you don’t
have to change them.

5. Repeat the above step for each VBX control in the VBX
file.

6. Click on the Generate button. ClassExpress creates the
C++ wrapper classes.

Examine the interface to the VBX control(s) generated by
ClassExpress by opening the header file in an IDDE source window.
You will see that the methods of the C++ class correspond in a
natural way to the properties and events of the VBX.

Summary
This chapter covers ClassExpress in detail discussing these main
points:

• Deriving a new class in an application from one of the
many MFC library base classes
Symantec C++ User’s Guide and Reference 18-21

18 More about ClassExpress

18-22 Symantec C++ U
• Establishing links between class member variables and
dialog box or window controls, and validating user entry
without having to write a single line of code

• Manipulating objects within an application from any OLE
client application

• Conversely, enabling an application to manipulate OLE
automation objects in other applications

• Extending the power of an application with Visual Basic
custom controls, without having to write the control
yourself

With this information, you are able to add significant new
functionality in a short period of time to the skeleton application
framework that AppExpress generates.
ser’s Guide and Reference

Class Editor
Reference

19

This

ava

chapter describes menu operations and mouse functions
ilable in the Class Editor. For an introduction to this tool, see

Chapter 5, “Defining Classes and Their Hierarchies.”

The Class Editor Window
There are several ways to open a Class Editor window:

• Choose Class Editor from the Goto View submenu of
the IDDE’s Window menu.

• Double-click on the Class Editor icon in the Views
toolbox, or drag the icon from the toolbox to the
desktop.

• Choose New! from another Class Editor window’s menu
bar.

• Double-click on a class in the Hierarchy Editor graphical
display.

• In the Class pane, move the cursor towards the left
margin until its orientation changes and it points to the
right. Then highlight one or more classes and drag them
onto the desktop.

• In the Members pane, move the cursor towards the left
margin until its orientation changes and it points to the
right. Then highlight one or more members and drag
them onto the desktop.

• Double-click on an entry in the Query Implementors
window.
Symantec C++ User’s Guide and Reference 19-1

19 Class Editor Reference

19-2 Symantec C++ U
• In the Query Implementors window, move the cursor
towards the left margin until its orientation changes and
it points to the right. Then highlight one or more entries
and drag them onto the desktop.

Multiple instances of the Class Editor may be open at the same time.
These windows share data among themselves and with Hierarchy
Editor windows, so changes made in one window are transmitted
instantly to the others.
ser’s Guide and Reference

The Class Editor Window

Global Undo
Edit menu commands
With one exception, the commands in the Edit menu (Figure 19-1)
operate on text in the Source pane and are identical in function to
the corresponding Edit menu commands in Source windows. For a
description, see Chapter 21, “Text Editor Reference.”

Cancels the last operation performed in the Class Editor or Hierarchy
Editor (such as Add Class or Add Member). The text of this menu
item changes to reflect the previous operation performed in the Class
Editor.

Goto menu commands
The commands in the Goto menu (Figure 19-2) are used to move
around within the Source pane and are identical to the
corresponding Goto menu commands in Source windows. For a
description, see Chapter 21, “Text Editor Reference.”

Figure 19-1 Edit menu commands

Figure 19-2 Goto menu commands
Symantec C++ User’s Guide and Reference 19-3

19 Class Editor Reference

19-4 Symantec C++ U
Macro menu commands
The commands in the Macro menu (Figure 19-3) are identical to
Macro menu commands in Source windows. For a description, see
Chapter 21, “Text Editor Reference.”

New! command
This command opens another Class Editor window.

Classes pane pop-up menu commands
The Classes pane pop-up menu (Figure 19-4) contains commands to
add and modify classes and inheritance relationships, and to access
Class Editor options.

Figure 19-3 Macro menu commands

Figure 19-4 Classes pane pop-up menu commands
ser’s Guide and Reference

The Class Editor Window

Add Derived

Add Top

Add Sibling

Show Header
Opens a dialog box (Figure 19-5) that lets you add a new class to the
hierarchy. The new class is a derived class of the currently selected
class(es), whose name is shown in the dialog box’s title.

Class name
Specifies a name for the new class.

Header file
Contains the name of the header file into which the class declaration
is placed. By default, the first eight characters of the class name (with
.h appended) are used as the header file name. You may type an
alternative filename into the textbox, or click on Browse to select a
filename from the Class Header File dialog box.

Adds a top-level (baseless) class. The dialog box that opens as a
result of selecting this command is identical in function to the one
that opens when you choose the Add Derived command.

Adds a class that is a sibling of (derived from the same base class as)
the currently selected class. The dialog box that opens as a result of
selecting this command is identical in function to the one that opens
when you choose the Add Derived command. You cannot add
siblings to classes with multiple base classes.

Opens a new Source window to edit the header file containing the
declaration of the currently selected class.

Note
You can also perform this action by moving the
cursor towards the left margin of the Class pane
until its orientation changes and it points to the
right. Then select a class and drag it onto the
desktop while holding down the Control key.

Figure 19-5 Create Derived Class dialog box
Symantec C++ User’s Guide and Reference 19-5

19 Class Editor Reference

19-6 Symantec C++ U

Connect Base
 Opens the Add Base dialog box (Figure 19-6) that lets you add a
base class to the selected class.

Access
These options indicate the base class access specifier:

Public: Public members of the base class are public members of the
derived class, and protected members of the base class are protected
members of the derived class.

Protected: Public and protected members of the base class are
protected members of the derived class.

Private: Public and protected members of the base class are private
members of the derived class.

Virtual
Specifies the base class to be virtual.

Base class
Specifies the class that is made a base of the selected class. You can
select more than one class to make a base class by holding down the
Control key while clicking on the class name, or by holding down
the Shift key while selecting a range of classes.

Figure 19-6 Add Base dialog box
ser’s Guide and Reference

The Class Editor Window

Edit Base Attributes
 Opens the Edit Base Attributes dialog box (Figure 19-7) with which
you change the attributes of the connection between the selected
class and its base class.

This command is disabled if classes are sorted alphabetically rather
than hierarchically.

Access
These options indicate the base class access specifier:

Public: Public members of the base class are public members of the
derived class, and protected members of the base class are protected
members of the derived class.

Protected: Public and protected members of the base class are
protected members of the derived class.

Private: Public and protected members of the base class are private
members of the derived class.

Don’t change: Appears only if you are editing the attributes of more
than one connection and the base class access specifiers are not all
identical. It means that the base class access specifiers are not
altered. It lets you change the Virtual specifier of all connections
without affecting their individual access specifiers.

Virtual
If selected, this option specifies the base class to be virtual. If grayed,
the virtual setting is left unchanged.

If the selected class is derived from multiple bases, only the
attributes of the connection with the base class immediately above in
the Classes pane are changed.

Figure 19-7 Edit Base Attributes dialog box
Symantec C++ User’s Guide and Reference 19-7

19 Class Editor Reference

19-8 Symantec C++ U

Delete Base Connection

Settings
Deletes the connection between the selected class and its base class.

If the class is derived from multiple bases, only the connection with
the base class immediately above it in the Classes pane is removed.

You will be prompted to confirm this if the Confirm Inheritance
Changes option on the General page of the Editing/Browsing
Settings dialog box is selected.

This command is disabled if classes are sorted alphabetically rather
than hierarchically.

Opens the Editing/Browsing Settings dialog box, in which you set
general Class Editor and text editor options. Details of this dialog
box are discussed in “Class Editor Settings,” later in this chapter.

Members pane pop-up menu commands
The Members pane pop-up menu (Figure 19-8) contains commands
to add, delete, and modify class members, and to access Class Editor
options.

Figure 19-8 Members pane pop-up menu commands
ser’s Guide and Reference

The Class Editor Window

Add
 Opens the Add Member dialog box (Figure 19-9). The new member
is added to the class whose members are currently displayed in the
Members pane.

Access
These options specify the member access control:

Public: Public members are accessible from outside the member’s
class.

Protected: Protected members are accessible only within the
member’s class, derived classes, and their friends.

Private: Private members are accessible only within the member’s
class and its friends.

Storage
These options specify the member storage class:

Normal: The member has no storage modifiers.

Static: Only one copy of the member exists; it is shared by all
objects of the member’s class.

Virtual (functions only): The function may be overridden in derived
classes.

Pure virtual (functions only): The function must be overridden in
derived classes; the class is abstract.

Friend (functions only): The named function is allowed access to
the class’s private and protected members.

Figure 19-9 Add Member dialog box
Symantec C++ User’s Guide and Reference 19-9

19 Class Editor Reference

19-10 Symantec C++ U

Delete
Inline
Requests inline implementation of a function. Causes its definition to
be placed in the .h file.

Declaration
Contains the member declaration. For data items, enter the type and
member name (for example, int nCats). For functions, enter the
return type, function name, and argument types (for example, void
AddCats(int)). Do not precede the declaration with storage
specifiers; use the option buttons above. Trailing semicolons are
optional.

Source file
Contains the name of the source file into which the member
definition is placed. By default, the first eight characters of the class
name (with .cpp appended) are used as the source file name. You
may type an alternative filename into the textbox, or click on Browse
to select an alternative filename from the Member Source File
dialog box.

The member declaration is placed in the class declaration. If the
specified source file does not already exist, it is created and added to
the project. By default, empty definitions of inline functions are
placed in the header file. Empty definitions of normal, static, and
virtual functions, as well as static data members, are placed in the
source file.

Deletes the currently selected member. If the Confirm Member
Delete option on the General page of the Editing/Browsing
Settings dialog box is selected, you are asked to confirm the
deletion. The member’s declaration and definition (if applicable) are
removed from the header and source files.
ser’s Guide and Reference

The Class Editor Window

Edit Attributes
 Opens the Change Member Attributes dialog box (Figure 19-10),
which you use to edit access and storage specifiers of the selected
member.

Access
These options specify the member access control:

Public: Public members are accessible from outside the member’s
class.

Protected: Protected members are accessible only within the
member’s class, derived classes, and their friends.

Private: Private members are accessible only within the member’s
class and its friends.

Don’t change: Only appears if you are editing the attributes of more
than one member and their access controls are not all identical. It
means that the access control is not altered. It lets you change other
member attributes without also affecting their individual access
controls.

Storage
These options specify the member storage class:

Normal: The member has no storage modifiers.

Static: Only one copy of the member exists; it is shared by all
objects of the member’s class.

Virtual (functions only): The function may be overridden in derived
classes.

Figure 19-10 Change Member Attributes dialog box
Symantec C++ User’s Guide and Reference 19-11

19 Class Editor Reference

19-12 Symantec C++ U

Show Source

Settings
Pure virtual (functions only): The function must be overridden; the
class is abstract.

Friend (functions only): The named function is allowed access to
the class’s protected and private members.

Don’t change: Only appears if you are editing the attributes of more
than one member and their storage classes are not all identical. It
means that the storage class is not altered. It lets you change other
member attributes without affecting their individual storage classes.

Inline
Requests inline implementation of a function. If grayed, the current
setting is left unchanged.

Source file
If applicable, this option contains the name of the source file holding
the member definition. You may change the filename in the textbox,
or click on Browse to select an alternative filename from the
Member Source File dialog box.

Opens a new Source window to show the source file containing the
definition of the currently selected member.

If you add new functions or static data definitions to the source file
or alter function argument or return types, you must update the class
header to reflect the changes.

Opens the Editing/Browsing Settings dialog box that lets you set
general Class Editor and text editor options. Details of this dialog
box are discussed in “Class Editor Settings,” later in this chapter.
ser’s Guide and Reference

The Class Editor Window

Save
Source pane pop-up menu commands
With one exception, commands in the Source pane pop-up menu
(Figure 19-11) are identical to the corresponding commands in
Source windows. For a description, see Chapter 21, “Text Editor
Reference.”

Saves the program code shown in the Source pane and places it in
the appropriate source or header file.

Changes to static data and to function argument and return types
made in the source code are updated automatically in the class
declaration and Members pane.

Class editor mouse functions
The mouse is used to select classes and members, perform editing
operations, open pop-up menus, and change the relative sizes of
Class Editor panes. As mentioned in “The Class Editor Window”
above, drag and drop operations are supported.

To resize the panes, first position the cursor over the dividing line
between panes. The cursor changes to a two-headed arrow. Then,
press the left mouse button and drag the separator to the desired
location.

Classes pane
The right mouse button opens the pop-up menu (see “Classes pane
pop-up menu commands,” earlier in this chapter).

Select a class by clicking on it. Several classes may be selected by
clicking on each one while holding down Control. The members of

Figure 19-11 Source pane pop-up menu commands
Symantec C++ User’s Guide and Reference 19-13

19 Class Editor Reference

19-14 Symantec C++ U
the class last selected appear in the Members pane. You may drag
and drop a class into the source pane; the class name is inserted into
the buffer.

Members pane
The right mouse button opens the pop-up menu (see “Members
pane pop-up menu commands,” earlier in this chapter).

Select a member by clicking on it. Several members may be selected
by clicking on each one while holding down Control.

Double-clicking on a member causes its definition (if appropriate) or
declaration to appear in the Source pane. If the source is not
available, the declaration is displayed.

You may drag and drop a member into the source pane; the member
declaration is inserted into the buffer.

Note
In addition to clicking on it, you can select a
member when the Members pane is active by
typing its name. As you type, the Class Editor
attempts to automatically complete the name.
(Depending on the rate at which you type, it may
consider a character to be the first character of a
new selection, rather than the next character in the
current select operation.)

Source pane
The right mouse button opens the pop-up menu (see “Source pane
pop-up menu commands,” earlier in this chapter).

The source pane supports typical Source window mouse and cursor
operations, as described in Chapter 21, “Text Editor Reference.”
ser’s Guide and Reference

The Class Editor Window
Toolbar commands
The Class Editor toolbar (Figure 19-12) offers quick access to several
menu options.

Figure 19-12 Class Editor toolbar

Cut Add Top Connect Base

Copy Play Macro

Paste

Add Derived

Add Member
Symantec C++ User’s Guide and Reference 19-15

19 Class Editor Reference

19-16 Symantec C++ U
These options are the same as those in other menus:

Cut: Same as choosing Cut from the Edit menu.

Copy: Same as choosing Copy from the Edit menu.

Paste: Same as choosing Paste from the Edit menu.

Add top: Same as choosing Add Top from the Classes pane pop-up
menu.

Add derived: Same as choosing Add Derived from the Classes pane
pop-up menu.

Add member: Same as choosing Add from the Member pane pop-
up menu.

Connect base: Same as choosing Connect Base from the Classes
pane pop-up menu.

Play macro: Same as choosing Play from the Macro menu.

Class Editor Settings
You can access Class Editor settings by choosing Text Settings from
the Edit menu, or Settings from the Classes or Members pane pop-
up menus. These commands open the Editing/Browsing Settings
dialog box, a workspace with tabs along the top margin. The tabs
are used to switch between several sets of options. The Class,
Member, and General options are discussed in this section; the
remaining options pertain to text editing and are discussed in
Chapter 21, “Text Editor Reference.”
ser’s Guide and Reference

Class Editor Settings
General options
The General options set (Figure 19-13) contains options for undo
levels, class/member bar confirmations, output window actions, and
key bindings, as well as some options related to the text editor.

Browser operations
Specifies the number of operations that can be undone in the Class
and Hierarchy Editors with the Global Undo command.

Text edits, per buffer
Specifies the number of edit operations that can be undone, per
buffer.

Confirmations
These options enable confirmation requests for various operations in
the Class and Hierarchy Editors. You can enable confirmations of:

• Member deletions
• Inheritance changes

Open output window on message
Lets the IDDE open an error window whenever there is an error of
any kind (during compilation, during parsing, and so on.)

Keyboard emulation file
Specifies the key bindings set to be used by the text editor.

Figure 19-13 General options
Symantec C++ User’s Guide and Reference 19-17

19 Class Editor Reference

19-18 Symantec C++ U
Multiple selections
This option enables multiple selections in lists in the Class and
Hierarchy editors:

Yes: Multiple selections are allowed.

No: Multiple selections are not allowed.

Confirm: Multiple selections are allowed, but a confirmation request
is displayed each time an operation is performed on multiple classes
or members.

Class options
The Class options set (Figure 19-14) lets you specify the display
order and font of classes in the Classes pane.

List classes
This option defines how classes are arranged in the Classes pane:

Hierarchically: Base classes are arranged alphabetically, with
derived classes placed below and indented relative to their base
classes. If a class has multiple bases, that class is listed below each
base class.

Alphabetically: Classes are arranged in alphabetical order, and each
class is listed only once.

Figure 19-14 Class options
ser’s Guide and Reference

Class Editor Settings
Font
Specifies the font used to display class names in the Classes pane.
You can select a predefined font from the drop-down list, or you
may click on Custom and select any installed font from a Windows
Font dialog box.

Apply here only
Indicates that the settings specified here should be applied only to
the current Class Editor window.

Member options
The Member options set (Figure 19-15) lets you specify the display
parameters of class members in the Members pane.

Grouping
This option indicates how class members are grouped. Any or all of
the following options may be selected:

By access: Members are grouped into Public, Protected, and Private.
If By Access is not selected, each member is preceded by a colored
diamond indicating its access specifier (green for public, yellow for
protected, red for private).

By file: Members are grouped by the source file containing their
definitions. When this option is selected, only functions and static
data are shown.

Figure 19-15 Member options
Symantec C++ User’s Guide and Reference 19-19

19 Class Editor Reference

19-20 Symantec C++ U
By kind: Members are grouped into Data, Functions, and Typedefs.

If more than one Grouping option is selected, members are grouped
by kind within files, and by files within access category.

Sorting
This option indicates how members are arranged within each group:

Order defined: Members are arranged in the order they are
declared in the class header.

Alphabetical: Members are arranged alphabetically.

Show full method names
Specifies that member names are displayed with their type specifiers
and (if a method) their parameter type list (for example, int
Multiply(int, int, int)). If this option is not selected, only
the identifier name is displayed (for example, Multiply).

Font
Specifies the font used to display member names in the Members
pane. You can select a predefined font from the combo box, or you
may click on Custom and select any installed font from a Windows
Font dialog box.

Apply here only
Indicates that the settings specified here should be applied only to
the current Class Editor window. Otherwise, the settings are applied
to all Hierarchy and Class Editor windows.
ser’s Guide and Reference

Hierarchy
Editor Reference

20

This

ava

chapter describes menu operations and mouse functions
ilable in the Hierarchy Editor. For an introduction to this tool, see

Chapter 5, “Defining Classes and Their Hierarchies.”

The Hierarchy Editor Window
To open a Hierarchy Editor window you have several choices:

• Choose Hierarchy Editor from the Goto View
submenu of the IDDE’s Window menu.

• Double-click on the Hierarchy Editor icon in the Views
toolbox, or drag the icon from the toolbox to the
desktop.

• Choose New! from another Hierarchy Editor window’s
menu bar.

Multiple instances of the Hierarchy Editor may be open at the same
time. These windows share data among themselves and with Class
Editor windows, so changes made in one window are transmitted
instantly to the others.

Edit menu commands

Commands in the Edit menu (Figure 20-1) let you undo Hierarchy
Editor operations and print the graphical display.

Figure 20-1 Edit menu commands
Symantec C++ User’s Guide and Reference 20-1

20 Hierarchy Editor Reference

20-2 Symantec C++ U

Global Undo

Print
Cancels the last operation performed in the Hierarchy Editor (such as
Add Class or Add Member). The text of this menu item changes to
reflect the previous operation performed in the Hierarchy Editor.

Opens the Print dialog box. See Chapter 21, “Text Editor
Reference.”

Macro menu commands
The commands in the Macro menu (Figure 20-2) are identical to
Macro menu commands in Source windows. For a description, see
Chapter 21, “Text Editor Reference.”

New! command
Opens another Hierarchy Editor window.

Pop-up menu commands
Contains commands to add and modify classes and inheritance
relationships, and to access Hierarchy Editor options.

Figure 20-2 Macro menu commands

Figure 20-3 Hierarchy Editor pop-up menu commands
ser’s Guide and Reference

The Hierarchy Editor Window

Add Derived

Add Top

Add Sibling

Show Header
Opens a dialog box (Figure 20-4) that lets you add a new class to the
hierarchy. The new class is a derived class of the currently selected
class, whose name is shown in the dialog box’s title.

Class name
Specifies a name for the new class.

Header file
Contains the name of the header file into which the class declaration
is placed. By default, the first eight characters of the class name (with
.h appended) are used as the header file name. You may type an
alternative filename into the textbox, or click on Browse to select a
filename from the Class Header File dialog box.

Adds a top-level (baseless) class. The dialog box that opens as a
result of selecting this command is identical in function to the one
that opens when you choose the Add Derived command.

Adds a class that is a sibling of (derived from the same base classes
as) the currently selected class. The dialog box that opens as a result
of selecting this command is identical in function to the one that
opens when you choose the Add Derived command.

Opens a new Source window to edit the header file containing the
declaration of the currently selected class.

Figure 20-4 Create Derived Class dialog box
Symantec C++ User’s Guide and Reference 20-3

20 Hierarchy Editor Reference

20-4 Symantec C++ U

Connect Base
 Opens the Add Base dialog box (Figure 20-5), with which you can
add a base class to the selected class.

Access
These options indicate the base class access specifier:

Public: Public members of the base class are public members of the
derived class, and protected members of the base class are protected
members of the derived class.

Protected: Public and protected members of the base class are
protected members of the derived class.

Private: Public and protected members of the base class are private
members of the derived class.

Virtual
Specifies the base class to be virtual.

Base class
Specifies the class that is made a base of the selected class. You can
select more than one class to make a base class by holding down the
Control key while clicking on the class name.

Figure 20-5 Add Base dialog box
ser’s Guide and Reference

The Hierarchy Editor Window

Edit Base Attributes

Delete Base Connection
Opens the Edit Base Attributes dialog box (Figure 20-6), with
which you can change the attributes of the selected connection
between a derived class and its base class.

Access
These options indicate the base class access specifier:

Public: Public members of the base class are public members of the
derived class, and protected members of the base class are protected
members of the derived class.

Protected: Public and protected members of the base class are
protected members of the derived class.

Private: Public and protected members of the base class are private
members of the derived class.

Don’t change: Appears only if you are editing the attributes of more
than one connection and the base class access specifiers are not all
identical. It means that the base class access specifiers are not
altered. It lets you change the Virtual specifier of all connections
without affecting their individual access specifiers.

Virtual
If selected, this option specifies the base class to be virtual. If grayed,
the virtual setting is left unchanged.

Deletes the selected connection between a derived class and its base
class.

You are prompted to confirm this if the Confirm Inheritance Changes
option on the General page of the Editing/Browsing Settings
dialog box is selected.

Figure 20-6 Edit Base Attributes dialog box
Symantec C++ User’s Guide and Reference 20-5

20 Hierarchy Editor Reference

20-6 Symantec C++ U

Settings
 Opens the Editing/Browsing Settings dialog box, in which you set
global Hierarchy Editor and text editor options. Details of this dialog
box are discussed in “Hierarchy Editor Settings,” later in this chapter.

Mouse functions
The right mouse button opens the pop-up menu.

A class is selected by clicking on it. Additional classes may be
selected by clicking while holding down Control. Members of the
class last selected appear in the Members child window.

Double-clicking on a class opens a Class Editor window.

A connection is selected by clicking on it. Additional connections
may be selected by clicking while holding down Control.

A new derived class is added by clicking on the base class and
dragging the cursor to an empty area of the display.

A new base-to-derived connection is made by clicking on the base
class and dragging the cursor to the derived class.

A derived class’s connection to a base may be moved to a different
base by clicking the connection, then dragging the connection’s
handle to the new base class. (This is a shortcut for deleting one
connection, then establishing a new one.)

Toolbar commands
The Hierarchy Editor toolbar (Figure 20-7) offers quick access to
several menu choices.

Figure 20-7 Hierarchy Editor toolbar

Add Top Connect Base

Play Macro

Print

Add Derived
ser’s Guide and Reference

Members Child Window
The following options are the same as those on other menus:

Add top: Same as choosing Add Top from the pop-up menu.

Add derived: Same as choosing Add Derived from the pop-up
menu.

Connect base: Same as choosing Connect Base from the pop-up
menu.

Print: Same as choosing Print from the Edit menu.

Play macro: Same as choosing Play from the Macro menu.

Members Child Window
The Hierarchy Editor’s Members child window is enabled by setting
the Members option on the Hierarchy page of the Editing/
Browsing Settings dialog box. You can open this dialog box by
choosing Settings from the Hierarchy Editor’s pop-up menu.

Member menu commands
The Member menu (Figure 20-8) contains commands to add, delete,
and modify class members, and to access Hierarchy Editor options.

Figure 20-8 Member menu commands
Symantec C++ User’s Guide and Reference 20-7

20 Hierarchy Editor Reference

20-8 Symantec C++ U

Add
 Opens the Add Member dialog box (Figure 20-9). The new member
is added to the class whose members currently are displayed in the
Members child window.

Access
These options specify the member access control:

Public: Members are accessible from outside the member’s class.

Protected: Members are accessible only within the member’s class,
derived classes, and their friends.

Private: Members are accessible only within the member’s class and
its friends.

Storage
These options specify the member storage class:

Normal: The member has no storage modifiers.

Static: Only one copy of the member exists; it is shared by all
objects of the member’s class.

Virtual (functions only): The function may be overridden in derived
classes.

Pure virtual (functions only): The function must be overridden in
derived classes; the class is abstract.

Friend (functions only): The named function is allowed access to
the class’s private members.

Figure 20-9 Add Member dialog box
ser’s Guide and Reference

Members Child Window

Delete
Inline
Requests inline implementation of a function.

Declaration
Contains the member declaration. For data items, enter the type and
member name (for example, int nCats). For functions, enter the
return type, function name, and argument types (for example, void
AddCats(int)). Do not precede the declaration with storage
specifiers; use the option buttons above. Trailing semicolons are
optional.

Source file
Contains the name of the source file into which the member
definition is placed. By default, the first eight characters of the class
name (with .cpp appended) are used as the source filename. You
can type an alternative filename into the textbox, or click on Browse
to select an alternative filename from the Member Source File
dialog box.

The member declaration is placed in the class declaration. If the
specified source file does not already exist, it is created and added to
the project. By default, empty definitions of inline functions are
placed in the header file. Empty definitions of normal, static, and
virtual functions, as well as static data members, are placed in the
source file.

Deletes the currently selected member. If the Confirm Member
Delete option on the General page of the Editing/Browsing
Settings dialog box is selected, you are asked to confirm the
deletion. The member’s declaration and definition (if applicable) are
removed from the header and source files.
Symantec C++ User’s Guide and Reference 20-9

20 Hierarchy Editor Reference

20-10 Symantec C++ U

Edit Attributes
 This command opens the Change Member Attributes dialog box
(Figure 20-10), which you can use to edit access and storage
specifiers of the selected member.

Access
These options specify the member access control:

Public: Members are accessible from outside the member’s class.

Protected: Members are accessible only within the member’s class,
derived classes, and their friends.

Private: Members are accessible only within the member’s class and
its friends.

Don’t change: Appears only if you are editing the attributes of more
than one member and their access controls are not all identical. It
means that the access control is not altered. It lets you change other
member attributes without also affecting their individual access
controls.

Storage
These options specify the member storage class:

Normal: The member has no storage modifiers.

Static: Only one copy of the member exists; it is shared by all
objects of the member’s class.

Virtual (functions only): The function may be overridden in derived
classes.

Pure virtual (functions only): The function must be overridden; the
class is abstract.

Figure 20-10 Change Member Attributes dialog box
ser’s Guide and Reference

Members Child Window

Show Source

Settings
Friend (functions only): The named function is allowed access to
the class’s protected and private members.

Don’t change: Appears only if you are editing the attributes of more
than one member and their storage classes are not all identical. It
means that the storage class is not altered. It lets you change other
member attributes without affecting their individual storage classes.

Inline
Requests inline implementation of a function. If grayed, the current
setting is left unchanged.

Source file
If applicable, this option contains the name of the source file holding
the member definition. You may change the filename in the textbox,
or click on Browse to select an alternative filename from the
Member Source File dialog box. If you change the source file, the
member definition moves.

Opens a new Source window to show the source file containing the
definition of the currently selected member.

If you add new functions or static data definitions to the source file,
or alter function argument or return types, you must update the class
header to reflect the changes.

Opens the Editing/Browsing Settings dialog box, in which you set
global Hierarchy Editor and text editor options. Details of this dialog
box are discussed in “Hierarchy Editor Settings,” later in this chapter.

Pop-up menu commands
The Members child window pop-up menu is identical to the
Member menu.

Mouse functions
The right mouse button opens the pop-up menu.

Select a member by clicking on it. Additional members may be
selected by clicking on them while holding down Control.

Double-clicking on a member causes its definition (if appropriate) or
declaration to be displayed in the Source child window.

You may drag and drop a member into the Source child window; the
member declaration is inserted into the buffer.
Symantec C++ User’s Guide and Reference 20-11

20 Hierarchy Editor Reference

20-12 Symantec C++ U
Source Child Window
The Hierarchy Editor’s Source child window is enabled by setting the
Source option on the Hierarchy page of the Editing/Browsing
Settings dialog box. You can open this dialog box by choosing
Settings from the Hierarchy Editor’s pop-up menu.

Edit menu commands
Commands in the Edit menu (Figure 20-11) are used to perform text
editing operations, and are identical to the corresponding Edit menu
commands in Source windows. For a description, see Chapter 21,
“Text Editor Reference.”

Goto menu commands
The commands in the Goto menu (Figure 20-12) are used to move
around within the Source child window and are identical to the
corresponding Goto menu commands in Source windows. For a
description, see Chapter 21, “Text Editor Reference.”

Figure 20-11 Edit menu commands

Figure 20-12 Goto menu commands
ser’s Guide and Reference

Hierarchy Editor Settings

Save
Pop-up menu commands
With one exception, commands in the Source child window pop-up
menu (Figure 20-13) are identical to the corresponding commands in
Source windows. For a description, see Chapter 21, “Text Editor
Reference.”

Saves the program code shown in the Source child window and
places it in the appropriate source or header file.

Changes to static data and to function argument and return types
made in the source code are updated automatically in the class
declaration and Members child window.

Mouse functions
The right mouse button opens the pop-up menu.

The Source child window supports typical source window mouse
and cursor operations, as described in Chapter 21, “Text Editor
Reference.”

Hierarchy Editor Settings
You can access Hierarchy Editor settings by choosing Settings from
the Hierarchy Editor pop-up menu, Settings from the Members child
window Member or pop-up menus, or Text Settings from the
Source child window Edit menu. These commands open the
Editing/Browsing Settings dialog box, a workspace with tabs
along the top margin.

Figure 20-13 Pop-up menu commands
Symantec C++ User’s Guide and Reference 20-13

20 Hierarchy Editor Reference

20-14 Symantec C++ U
The tabs are used to switch between several sets of options. The
Hierarchy, Member, and General options are discussed in this
section; the remaining options pertain to text editing and are
discussed in Chapter 21, “Text Editor Reference.”

General options
The General options set (Figure 20-14) contains options for undo
levels and confirmations, as well as options related to the text editor.

Browser operations
Specifies the number of operations that can be undone in the Class
and Hierarchy Editors.

Text edits, per buffer
Specifies the number of edit operations that can be undone per
buffer.

Confirmations
These options enable confirmation requests for various operations in
the Class and Hierarchy Editors. You can enable confirmations of:

• Member deletions
• Inheritance changes

Figure 20-14 General options
ser’s Guide and Reference

Hierarchy Editor Settings
Open output window on message
Lets the IDDE open an error window whenever there is an error of
any kind (during compilation, during parsing, and so on.)

Keyboard emulation file
Specifies the key bindings set to be used by the text editor.

Multiple selections
Enables multiple selections in lists in the Class and Hierarchy editors.

Yes: Multiple selections are allowed.

No: Multiple selections are not allowed.

Confirm: Multiple selections are allowed, but a confirmation request
is displayed each time an operation is performed on multiple classes
or members.

Hierarchy options
The Hierarchy options set (Figure 20-15) lets you enable the
Members and Source child windows and specify the font used in the
graphical display.

Figure 20-15 Hierarchy options
Symantec C++ User’s Guide and Reference 20-15

20 Hierarchy Editor Reference

20-16 Symantec C++ U
Pop-up windows
These options enable the Hierarchy Editor child windows:

Members: Enables the Members child window.

Source: Enables the Source child window.

Font
Specifies the font used to display class names. You can select a
predefined font from the drop-down list, or you can click on Custom
and select any installed font from a Windows Font dialog box.

Apply here only
Indicates that the specified settings should be applied only to the
current Hierarchy Editor window.

Member options
Lets you specify the display parameters of class members in the
Members child window.

Figure 20-16 Member options
ser’s Guide and Reference

Hierarchy Editor Settings
Grouping
Indicates how class members are grouped. Any or all of the
following options may be checked:

By access: Members are grouped into public, protected, and private.
If By Access is not selected, each member is preceded by a colored
diamond indicating its access specifier (green for public, yellow for
protected, red for private).

By file: Members are grouped by the source file containing their
definitions. When this option is selected, only functions and static
data are shown.

By kind: Members are grouped into Data, Functions, and Typedefs.

If more than one Grouping option is selected, members are grouped
by kind within files and by files within access category.

Sorting
Indicates how members are arranged within each group.

Order defined: Members are arranged in the order in which they
are declared in the class header.

Alphabetical: Members are arranged alphabetically.

Show full method names
Specifies that member names are displayed with their type specifiers
and (if a method) their parameter type list (for example, int
Multiply(int, int, int)). If this option is not selected, only
the identifier name is displayed (for example, Multiply).

Font
Specifies the font used to display member names in the Members
child window. You can select a predefined font from the combobox,
or you can click on Custom and select any installed font from a
Windows Font dialog box.

Apply here only
Indicates that the specified settings should be applied only to the
current Hierarchy Editor window. Otherwise, the settings are applied
to all Hierarchy and Class Editor windows.
Symantec C++ User’s Guide and Reference 20-17

20 Hierarchy Editor Reference

20-18 Symantec C++ U
ser’s Guide and Reference

Text Editor
Reference

21

This

edit

chapter describes commands and options available in the text
or, including global search functions, key binding options, and

macro functions. For an introduction to text editing, see Chapter 6,
“Editing Program Code.”

The Source Window
To open a Source window, you have several choices:

• Choose New or Open from the IDDE’s File menu.

• Choose Source from the Goto View submenu of the
IDDE’s Window menu.

• Double-click on the Source icon in the Views toolbox, or
drag the icon from the toolbox to the desktop.

• Double-click on a filename in the Project window.

• Choose Show Source or Show Header from pop-up
menus in the Class and Hierarchy Editors.

• Double-click on an error message in the Error window.

• Choose New or Open from another Source window’s
File menu.

• Choose New! from another Source window’s menu bar.

• Select text in one Source view, then drag it onto the
desktop. This results in an untitled Source window
containing the selected text.
Symantec C++ User’s Guide and Reference 21-1

21 Text Editor Reference

21-2 Symantec C++ U

New

Open
The Hierarchy Editor’s Source child window, as well as the Source
pane of the Class Editor, contain a subset of the standard Source
window functionality. See Chapter 5, “Defining Classes and Their
Hierarchies,” Chapter 19, “Class Editor Reference,” and Chapter 20,
“Hierarchy Editor Reference.”

File menu commands
The File menu (Figure 21-1) contains commands to open, save, and
print files, as well as other useful file-related commands. Note that
the Save and Add to Project command changes to Add to Project,
Save and Parse, or Parse, depending on whether the file is part of
the project, up to date, or parsed.

Opens a new, empty, and untitled Source window.

Opens a Windows File Open dialog box, then creates a new Source
window containing the selected file. If the Open command is
chosen from an untitled, unmodified Source window, the selected
file is opened in that Source window.

Figure 21-1 File menu commands
ser’s Guide and Reference

The Source Window

Load

Close

Save

Save As

Save All

Compile

Save and Add to Project

Add to Project

Save and Parse

Parse
Opens a Windows File Open dialog box, then loads the selected file
into the current Source window. If there are unsaved changes in the
previous file, you are asked if you would like to save the changes
before loading the new file.

Closes the Source window. If there are unsaved changes, you are
asked if you would like to save the changes before closing the file.

Saves the current buffer to disk. If the file is untitled, this command
executes Save As.

Saves the current buffer using the Windows File Save As dialog box.
This dialog box contains a check box—Add to Project, which lets
you add the file to the current project.

Executes Save for every open Source window.

Saves the buffer and compiles the file.

Saves the file to disk, adds the file to the project, and reparses all
files in the project.

The Save and Add to Project command changes to Add to Project,
Save and Parse, or Parse, depending on whether the file is part of
the project, up to date, or parsed. These are the four changes:

1. A new source file is created but not saved, or flagged as
modified since the last save. The menu reads “Save and
Add to Project.”

2. A source file which has not been added to the project is
saved. The menu reads “Add to Project.”

3. A source file which exists in a project is loaded in the
source editor. The menu reads "Parse."

4. A source file exists in a project and has been flagged or
modified. The menu read “Save and Parse.”

Adds the file to the project and reparses all files in the project.

Saves the file to disk and reparses all files in the project.

Reparses all files in the project.
Symantec C++ User’s Guide and Reference 21-3

21 Text Editor Reference

21-4 Symantec C++ U

Compare
 Opens the Compare Files dialog box (Figure 21-2), which lets you
select two files to compare.

File 1 and File 2
Specifies the files to be compared. You may type the file names,
select names from the drop-down lists, or click on Browse to select
files from standard Windows filename dialog boxes.

If either file is open in a Source window, the editor uses the version
in memory rather than the one in the disk file.

Line
Specifies the line number at which the comparison starts.

Display
Specifies the arrangement of the windows in which the two files are
displayed:

Horizontal: The files are displayed one above the other.

Vertical: The files are displayed side-by-side.

The editor performs the comparison on a line-by-line basis. When it
finds a mismatch, it highlights the appropriate lines in both files. The
Compare dialog box (Figure 21-3) indicates where the mismatch
was found.

Figure 21-2 Compare Files dialog box

Figure 21-3 Compare dialog box showing mismatch
ser’s Guide and Reference

The Source Window

Insert

Revert

Page Setup
Next match: Click on this button to resynchronize the
comparison. The editor highlights the next set of matching lines
and the Compare dialog box indicates where the match occurs.

Next difference: Click on this button to find the next mismatched
line. You can continue the comparison in this way until no more
differences are found.

Opens an Insert File dialog box. The editor inserts the contents of
the file you select at the current insertion point.

Rereads the file from disk, abandoning any changes made since the
last time it was saved.

Opens the Page Setup dialog box (Figure 21-5), which sets
parameters for printing.

Header and footer
The header and footer are single lines of text displayed at the top
and bottom (respectively) of each page of the printed output. To
omit the header or footer, leave the textbox empty.

You can embed the following special-purpose codes in the header
and footer text:

Figure 21-4 Compare dialog box showing match

Figure 21-5 Page Setup dialog box
Symantec C++ User’s Guide and Reference 21-5

21 Text Editor Reference

21-6 Symantec C++ U

Print
• %f gives the full path and filename of active file
• %d gives the current date and time
• %p gives the current page number

Margins
Sets the page margins. The units are the standard units of
measurement used in your country (inches or centimeters), set in the
Windows Control Panel.

Font
Opens a Windows Font dialog box, with which you select a
typeface, style, and size for the printed output. The entire document,
including headers and footers, is shown in the selected font.

Printer
Opens a Windows Print Setup dialog box, with which you can set
additional printing parameters.

Opens the Text Print dialog box (Figure 21-6), to let you set
additional print options and print the current file or text selection.
After setting print options, click OK to print.

Print range
Specifies whether the entire file or just the current text selection is
printed:

All: Prints the entire file.

Selection: Prints the highlighted text selection. (It is disabled if no
text is selected.)

Figure 21-6 Text Print dialog box
ser’s Guide and Reference

The Source Window

Undo

Cut

Copy
Print quality
This drop-down listbox specifies print quality. Options include the
specified printer’s output capabilities, expressed in dots per inch.

Copies
Specifies the number of copies to print.

Setup
Opens a Windows Print Setup dialog box, with which you can set
additional printing parameters.

Edit menu commands
The Edit menu (Figure 21-7) contains standard edit and search
commands, as well as commands to access text editor options.

Reverses the last cut, paste, replace, or typed character. By
repeatedly choosing this command, you can undo previous
commands, up to the limit of the undo buffer.

Copies the selected text to the Clipboard, then deletes it from the
buffer.

Copies the selected text to the Clipboard.

Figure 21-7 Edit menu commands
Symantec C++ User’s Guide and Reference 21-7

21 Text Editor Reference

21-8 Symantec C++ U

Paste

Delete

Find
Inserts the text from the Clipboard at the insertion point.

Deletes the selected text from the buffer.

Opens the Find dialog box (Figure 21-8), used to search the file for
specified text.

Pattern
This drop-down listbox contains the text to be found.

You can initialize the pattern by selecting the text before choosing
Find. (The text must not span a line break.) Otherwise, you may
type the text you want to find into the textbox, or select text from
previous search strings, stored in the drop-down listbox.

The pattern may also be a regular expression (text containing
wildcard characters) if the Regular Expression option is selected.
Regular expression syntax is discussed in “Using Global Find,” later
in this chapter.

Ignore case
If this option is turned on, the search is not case sensitive.

Whole words only
If this option is turned on, a string is considered a match only if it is
not part of a larger alphanumeric string.

Regular expression
This option enables regular expression matching.

The search begins at the current insertion point. Click Next to search
forward in the file, or Previous to search backward in the file. If the
search is successful, the matching text is highlighted. Otherwise, the
status line displays the message “Pattern not found.”

Figure 21-8 Find dialog box
ser’s Guide and Reference

The Source Window

Repeat Find

Find Previous

Find Next

Replace
Continues the search begun by Find. The search resumes from the
current insertion point and proceeds in the direction previously
specified.

If the search is successful, the matching text is highlighted.
Otherwise, the status line displays the message “Pattern not found.”

Searches backward from the current insertion point for the text to be
found.

Searches forward from the current insertion point for the text to be
found.

Opens the Replace dialog box (Figure 21-9), which lets you find
and replace occurrences of text with different text.

Pattern
This drop-down listbox contains the text to be found and replaced.

You can initialize the pattern by selecting text before choosing
Replace. (The text must not span a line break.) Otherwise, you may
type the text you want to find into the textbox, or select text from
previous search strings, stored in the drop-down listbox.

The pattern may also be a regular expression (text containing
wildcard characters) if the Regular Expressions option is selected.
Regular expression syntax is discussed in the section “Using Global
Find,” later in this chapter.

Replacement
This drop-down listbox contains the text with which you replace
occurrences of Pattern. Type the replacement text into the textbox,
or select text from previous replacement strings, stored in the drop-
down listbox.

Figure 21-9 Replace dialog box
Symantec C++ User’s Guide and Reference 21-9

21 Text Editor Reference

21-10 Symantec C++ U

Global Find
Ignore case
If this option is turned on, the search is not case sensitive.

Regular expressions
Enables regular expression matching.

Confirm changes
Causes the text editor to request confirmation before each
replacement. If this option is not selected, the editor replaces all
occurrences of Pattern, starting at the current insertion point, without
prompting you.

Restrict changes to selected text
Instructs the text editor to perform replacements only within the
selected block of text.

Whole words only
If selected, the text editor considers text a match only if it is not part
of a larger alphanumeric string.

The search/replace operation begins at the current insertion point. If
you have selected Confirm Changes, the Confirm Replacement
dialog box (Figure 21-10) is displayed when a match is found.

You may click Yes to make the replacement, No to skip this
replacement, or Cancel to end the search/replace operation. Also, if
you uncheck Confirm, then click Yes, the editor replaces all
remaining occurrences of Pattern without prompting you.

Opens the Global Find dialog box. See “Using Global Find,” later in
this chapter.

Figure 21-10 Confirm Replacement dialog box
ser’s Guide and Reference

The Source Window

Current Buffer Settings
 Opens the Current Buffer Options dialog box (Figure 21-11), with
which you can change editing options for the current Source
window.

Tab spacing
Specifies the number of columns between tab stops.

Right margin
Specifies the column that acts as the right margin.

Word wrap
Enables word wrap. While typing, lines extending beyond the right
margin are broken automatically at the last word boundary before
the margin.

Autoindent
Enables automatic indentation on newline. When you press Enter,
the editor positions the cursor directly below the first nonblank
character in the previous line.

Read only
Sets the read-only flag on the buffer, so the buffer may not be
changed.

Use as default for ...
Saves the Current Buffer Options settings so they become the
defaults for any subsequent file with the same file extension that is
loaded. For example, if the file that is currently open is “test.cpp,”
the check box reads, “Use as default for .cpp.” If this is an untitled
buffer, the check box is disabled.

Expand tabs with spaces
Tabs are inserted into the text as an appropriate number of spaces
rather than as tab characters.

Figure 21-11 Current Buffer Options dialog box
Symantec C++ User’s Guide and Reference 21-11

21 Text Editor Reference

21-12 Symantec C++ U

Text Settings

Line
C++ mode
The buffer is treated as C++ code. Special options for C++ code are
set in the Editing/Browsing Settings dialog box.

Persistent
Causes the buffer options for this file to be saved during the current
IDDE session, even if the file is closed. Otherwise, buffer options are
set to their global defaults if a file is closed and reopened.

Opens the Editing/Browsing Settings dialog box, in which you set
global text editing options. Details of this dialog box are discussed in
the “Text Settings” section later in this chapter.

Goto menu commands
The Goto menu (Figure 21-12) contains commands to move within
the source file.

Opens the Goto Line dialog box (Figure 21-13). Type the line
number and click OK, and the insertion point is moved to the
specified line.

Figure 21-12 Goto menu commands

Figure 21-13 Goto Line dialog box
ser’s Guide and Reference

The Source Window

Function

Matching Delimiter

Bookmark
Opens the Goto Function dialog box (Figure 21-14).

The Function Name listbox holds the available function names.
Either type in the function name or scroll and select the function
name from the list. When you click OK, the insertion point moves to
the beginning of the specified function.

Member functions in the list typically are displayed as
member:: class. To change the format to class:: member, deselect
the Reverse Class::Member Format option.

Finds the delimiter that matches the one to the right of the current
insertion point. The insertion point is moved to the front of the
matching delimiter. This command can find matching parentheses,
square brackets, or braces.

Opens the Bookmarks dialog box (Figure 21-15), which you can
use to set and move to as many as ten different locations in your
source files. Bookmarks are saved through the current IDDE session
only.

Figure 21-14 Goto Function dialog box

Figure 21-15 Bookmarks dialog box
Symantec C++ User’s Guide and Reference 21-13

21 Text Editor Reference

21-14 Symantec C++ U

Buffer
Bookmark list
Shows the locations of the ten bookmarks by file, line, and column.
Click on an entry to select it; double-click on an entry to go to it.

Goto
Moves the insertion point to the selected bookmark. This command
opens a file if it is not already open. You can also double-click on
the bookmark in the list.

Clear
Removes the selected bookmark.

Drop
Sets the selected bookmark to the current insertion point. The entry
in the bookmark list is updated to show the file, line, and column.

Opens the Edit Buffers dialog box (Figure 21-16). This dialog box
presents a list of files currently open in Source windows; it allows
you to view and change each buffer’s editing options and to perform
various file-related operations.

Context
This drop-down listbox specifies File Buffers or Member Buffers. File
Buffers are Source windows open to edit an entire file. Member

Figure 21-16 Edit Buffers dialog box
ser’s Guide and Reference

The Source Window
Buffers are Class Editor Source panes and Hierarchy Editor Source
child windows, open to edit a particular member definition.

Buffer list
Contains the names of files currently open in Source windows (or, if
the Member Buffers context is selected, the names of member
functions open in Class Editor Source panes and Hierarchy Editor
Source child windows). Click on a filename to select it; double-click
on it to bring the corresponding Source window to the front.

Buffer properties
Lets you view and set options for each individual buffer listed in the
buffer list.

Tab spacing: Specifies the number of columns between tab stops.

Right margin: Specifies the column that acts as the right margin.

Word wrap: Enables word wrap. While typing, lines that extend
beyond the right margin are broken automatically at the last word
boundary before the margin.

Autoindent: Causes the text editor to indent automatically on
newline. When you press Enter, the editor positions the cursor
directly below the first nonblank character in the previous line.

Read only: The buffer may not be changed.

Use as default for ...: Saves the Current Buffer Options settings as
the defaults for any subsequent file with the same file extension that
is loaded. For example, if the currently open file is test.cpp , the
check box reads, “Use as default for .cpp.” If the currently open file
is test.txt , the check box reads, “Use as default for .txt.” If the
currently open file has no extension, the check box reads, “Use as
default.” If this is an untitled buffer, the check box is disabled.

Expand tabs with spaces: Tabs are inserted into the text as an
appropriate number of spaces, rather than as tab characters.

C++ mode: Text is treated as C++ code. Special options for C++
code are set in the Editing/Browsing Settings dialog box (see
“Text Settings,” later in this chapter).

Persistent: Causes the buffer options for this file to be saved during
the current IDDE session, even if the file is closed. Otherwise, buffer
Symantec C++ User’s Guide and Reference 21-15

21 Text Editor Reference

21-16 Symantec C++ U

Record Macro
options are set to their global defaults if a file is closed and
reopened.

Switch to
Brings the Source window containing the file selected in the listbox
to the front.

Open
Opens a Windows File Open dialog box, with which you can select
a file to open for editing.

Save
Saves the file selected in the listbox. If the file is untitled, this
command executes Save As.

Save all
Saves all files in the listbox.

Save as
Opens a Windows File Save As dialog box, with which you can save
the file selected in the listbox under a new name.

Close
Closes the file selected in the listbox.

Close all
Closes all files in the listbox.

Find
Opens the Global Find dialog box (see “Using Global Find,” later in
this chapter).

Macro menu commands
The Macro menu (Figure 21-17) allows you to record, play, and edit
macros.

Starts the recording of the default macro. While a macro is being
recorded, this menu choice is replaced in the menu by Stop

Figure 21-17 Macro menu commands
ser’s Guide and Reference

The Source Window

Play Macro

ScriptMaker
Recording. Menu and keystroke recording is limited to the current
source window only.

To record a macro:

1. Choose Record Macro.

If a default macro exists, you are asked to confirm that
you want to record over the default macro. Click OK.

2. Enter the sequence of keystrokes and menu selections
you want to record.

3. Choose Stop Recording to end the macro.

Plays back the default macro.

Opens the ScriptMaker dialog box (Figure 21-18), with which you
copy, name, and edit macros.

Existing macros
This is the list of macros. Click on a macro to select it; double-click
on the macro to edit it.

Menu order
These buttons allow you to change the order of the macros listed in
the Macro menu. Click on the Up Arrow to move the selected macro
up in the menu; click on the Down Arrow to move it down in the
menu. The default macro always remains at the top of the list.

Put in menu
Causes the selected macro to be listed in the Macro menu.

Figure 21-18 ScriptMaker dialog box
Symantec C++ User’s Guide and Reference 21-17

21 Text Editor Reference

21-18 Symantec C++ U
Edit
Opens the Macro Editor window. For information about the macro
language and the Macro Editor window, see the Symantec C++ IDDE
Help.

Rename
Opens the Rename/Clone Script dialog box (Figure 21-19), with
which you can change the selected macro’s menu name or filename.

Menu name: Name under which this macro is listed in the Macro
menu.

File name: Name of the file in which the macro is saved.

You can change either or both names. Note that you cannot rename
the default macro.

Clone
This button opens the Rename/Clone Script dialog box. This
command makes a copy of the selected macro.

Menu name: Name under which this macro is listed in the Macro
menu.

File name: Name of the file in which the macro is saved. When
cloning, this filename must be different from that of any other macro.

Note
To create a new macro, first use the Record Macro
command to record it as the default macro. Then
choose Scriptmaker and use Clone to make a copy
of the default macro under a new name.

Delete
Deletes the selected macro.

Figure 21-19 Rename/Clone Script dialog box
ser’s Guide and Reference

The Source Window

Copy

Cut

Paste

Delete

Query Implementors
New! command
Opens another Source window on the current file.

Changes made to a file in one Source window are made
automatically in other Source windows containing the same file.

Pop-up menu commands
The pop-up menu (Figure 21-20) is opened by clicking the right
mouse button in the edit area of the Source window.

Copies the selected text to the Clipboard.

Copies the selected text to the Clipboard, then deletes it from the
buffer.

Inserts the text from the Clipboard at the insertion point.

Deletes the selected text from the buffer.

Interprets the tokens or symbols surrounding the insertion point
as a C++ class member name and locates all classes with a member

Figure 21-20 Source window pop-up menu commands
Symantec C++ User’s Guide and Reference 21-19

21 Text Editor Reference

21-20 Symantec C++ U

Select

Normal
of this name. The results are displayed in the Members window
(Figure 21-21).

For example, if the token is Test , Query Implementors shows a
list of all implementors of Test , such as One::Test.

In the Members window, you can select an implementor and choose
Show Source from the Member menu to open a Source window to
the corresponding source code or, double-click an implementor to
open a Class Editor window to the member source. Note that if only
one implementor of a token is found, the Query Implementors
command opens the Class Editor window directly, without first
opening the Members window.

Opens the Select submenu (Figure 21-22).

Restores the original text select block to normal mode, undoing
changes caused by Column and Line (see the following).

Figure 21-21 Members window

Figure 21-22 Select submenu commands
ser’s Guide and Reference

The Source Window

Column

Line

Cancel

Format Text

Indent Block

Unindent Block

Upper Case

Lower Case

Tabs to Spaces
Changes the text selection block to a column-oriented select block,
in which only the characters in the columns between the start and
end of the original text block are selected.

Changes the text selection block to a line-oriented select block, in
which all characters in the lines between the start and end of the
original text block are selected.

Deselects the current select block.

Opens the Format Text submenu (Figure 21-23).

Indents all nonblank lines in the selected text by one tab stop. Tabs
are inserted as tab characters or as spaces, depending on the current
buffer option settings. All text in a region will be indented if a region
is selected upon issuing the command.

Unindents all lines in the selected text by one tab stop. All text in a
region will be unindented if a region is selected upon issuing the
command.

Changes all alphabetic characters in the selected text to uppercase.

Changes all alphabetic characters in the selected text to lowercase.

Changes all tab characters in the selected text to spaces. The number
of spaces used to replace each tab character depends on the Tab
spacing option.

Figure 21-23 Format Text submenu commands
Symantec C++ User’s Guide and Reference 21-21

21 Text Editor Reference

21-22 Symantec C++ U

Spaces to Tabs

Write Block

Save
Changes spaces in the selected text to tab characters. The number of
spaces used to create each tab character depends on the Tab spacing
option.

Opens a Write Block dialog box. Select a file or type a new name;
the editor writes the currently selected text block to this file. To
append the selection block to a file, check Append.

Saves the current buffer to disk. If the file is untitled, this command
executes Save As.

Toolbar commands
The Source window toolbar (Figure 21-24) offers quick access to
several menu choices.

New: Same as choosing New from the File menu.

Open: Same as choosing Open from the File menu.

Save: Same as choosing Save from the File menu.

Cut: Same as choosing Cut from the Edit menu.

Copy: Same as choosing Copy from the Edit menu.

Paste: Same as choosing Paste from the Edit menu.

Print: Same as choosing Print from the File menu.

Find: Same as choosing Find from the Edit menu.

Find previous: Searches backward in the file for the search string.

Figure 21-24 Source window toolbar

Open

New

Cut

Save

Paste

Copy

Find

Print

Find next

Find previous

Play Macro
ser’s Guide and Reference

Text Settings
Find next: Searches forward in the file for the search string.

Play macro: Same as choosing Play Macro from the Macro menu.

Note that the Find previous and Find next buttons are subtly
different from Find Again in the Edit menu, which can only repeat
the search in the original direction.

Text Settings
Choosing Text Settings from the Source window’s Edit menu opens
the Editing/Browsing Settings dialog box, a workspace with tabs
along the top margin. The tabs are used to switch between several
sets of options. Each set of options is described below.

General options
The General options set (Figure 21-25) contains options for undo
levels and the key binding file, as well as some options related to the
Class and Hierarchy Editors.

Browser operations
Specifies the number of operations that can be undone in the Class
and Hierarchy Editors. See Chapter 19, “Class Editor Reference,” and
Chapter 20, “Hierarchy Editor Reference.”

Figure 21-25 General options
Symantec C++ User’s Guide and Reference 21-23

21 Text Editor Reference

21-24 Symantec C++ U
Text edits, per buffer
Specifies the number of edit operations that can be undone per
buffer.

Confirmations
Enables confirmation requests for various operations in the Class and
Hierarchy Editors. See Chapter 19, “Class Editor Reference,” and
Chapter 20, “Hierarchy Editor Reference.”

Open output window on message
Lets the IDDE open an error window whenever there is an error of
any kind (during compilation, during parsing, and so on.)

Keyboard emulation file
Specifies the key bindings set to be used. Key bindings allow you to
associate keystroke sequences with functions and macros.
Information about key bindings sets can be found in the Symantec
C++ IDDE Help.

Multiple selections
Enables multiple selections in lists in the Class and Hierarchy editors.
See Chapter 19, “Class Editor Reference,” and Chapter 20, “Hierarchy
Editor Reference.”
ser’s Guide and Reference

Text Settings
Text options
The Text options set (Figure 21-26) contains options for indentation,
cursor styles, keyboard emulation, and text editor font.

Tab spacing
Specifies the default for the number of columns between tab stops.
This value may be overridden locally in each buffer.

Figure 21-26 Text options
Symantec C++ User’s Guide and Reference 21-25

21 Text Editor Reference

21-26 Symantec C++ U
Right margin
Specifies the default for the column that acts as the right margin. This
value may be overridden locally in each buffer.

Autoindent
Indents automatically on newline. When you press Enter, the editor
positions the cursor directly below the first nonblank character in the
previous line. This option may be overridden locally in each buffer.

Expand tabs with spaces
Tabs are inserted into the text as an appropriate number of spaces,
rather than as tab characters. This option may be overridden locally
in each buffer.

Show horizontal scroll bar
Enables the horizontal scroll bar at the bottom of the Source
window.

Remove trailing spaces on save
Trailing spaces and Tabs are removed from the end of each line
when a file is saved.

Cursor styles
Specifies caret style. You may set styles individually for the caret in
Insert and Overwrite modes. Styles are:

Block: The current character is displayed in inverse video.

Underline: The current character is underlined.

Vertical bar: A vertical bar appears to the left of the current
character.

Blink: The cursor blinks. The blink rate is specified in the Windows
Control Panel.

Font
Specifies the text font. You can select a predefined font from the
drop-down list, or you can click Custom and select any installed font
from a Windows Font dialog box.
ser’s Guide and Reference

Text Settings
Brief-compatible select
If you choose this option, then enter the “Toggle Mode Select”
mode. The editor remains in selection mode when you use the
arrow keys.

Typing replaces selection
Enables the Windows standard convention of replacing selected text
with any typed character or pasted text. If this option is not selected,
typing or pasting inserts the text to the left of the current selection.

Cut/copy line without selection
If no text is selected, Cut and Copy, respectively, cut and copy the
current line. If text is selected, Cut and Copy work as usual.

If this option is not selected, Cut and Copy have no effect if no text
is selected.

Normal selection for debugging
Enables normal selection of text when in debugging mode. If
disabled, you can drag from the source window to the Assembly,
Data/Object, and Function windows while debugging.

Virtual cursor
Enables virtual cursor mode, in which you can position the caret
anywhere in the window, regardless of line endings. Note that even
with this option enabled, you still cannot position the caret beyond
the last line in the file.

Enable menu accelerators
Enables menu accelerator keys. With this option selected, new
windows have underscores beneath the top-level menu items to
show the Alt key combination you can use to access the menu.
Symantec C++ User’s Guide and Reference 21-27

21 Text Editor Reference

21-28 Symantec C++ U
Help Files
Clicking on Help Files opens the Text Help File Configuration dialog
box, as shown in Figure 21-27.

This dialog box lets you associate particular Windows Help files with
each of the four Text Help commands. The Text Help commands are
run by key sequences such as Shift+F1. (The exact mapping of key
sequences to Text Help commands depends on the current key
mapping. See “Keys options,” later in this chapter.) The Text Help
commands call the Windows API function Windows Help, passing it
the name of a Windows Help file and (optionally) a keyword. The
Text Help commands are useful, for example, for gaining access to
help on a particular API function or MFC class directly from the
source code.

Text Help Command: Specifies a Text Help command (TextHelp1,
TextHelp2, TextHelp3, TextHelp4).

Help File: Specifies the Windows Help file to be associated with the
selected Text Help command. This filename is passed to Windows
Help when the Text Help command is run.

Grab Token At Insertion Point: If this box is checked, the Text
Help commands pass the token at the insertion point in the text
buffer to Windows Help as a keyword. This causes Windows Help to
search for the associated topic, and, if found, to immediately display
help on the keyword topic.

Figure 21-27 Text Help File Configuration dialog box
ser’s Guide and Reference

Text Settings
C++ options
The C++ options set (Figure 21-28) contains options to check
delimiters, indent after braces, and auto-align comments. It also
allows you to add custom keywords to the keyword dictionary.

Check delimiters
If you type a right parenthesis, square bracket, or brace, the editor
briefly highlights the corresponding left delimiter. If no matching
delimiter is found, an error message is displayed.

Enable C++ mode
This option enables C++ mode globally. If it is not selected, C++
mode features are disabled for all buffers, regardless of local buffer
option settings.

Enable C++ mode for untitled files
When this option is on, new files that have not yet been given a
name are assumed to be C/C++ source. This box should be checked
in most circumstances, so that keywords can be recognized in new
files, for example.

Indent after {
If the last character typed on a line is a left brace, the next line is
indented automatically by an extra tab stop. This option works only
if Autoindent is enabled in the buffer. Also, if the first character on a

Figure 21-28 C++ options
Symantec C++ User’s Guide and Reference 21-29

21 Text Editor Reference

21-30 Symantec C++ U
line is a right brace (}), the line is unindented automatically; this is
independent of the Autoindent option.

Auto-align comments at column
If this option is enabled, when you type “// ” to start a C++
comment, the editor automatically indents the comment to a
specified alignment column. You can specify the alignment column
in the adjacent textbox.

Enable C++ mode on extensions
Specifies the file extensions for which C++ mode is automatically
enabled. Type the extensions into the textbox, separated by spaces.

Custom keywords
You can maintain a set of custom keywords that are highlighted in
the edit window in a manner you specify (see “Display options,”
later in this chapter).

To add a new keyword, type the keyword into the textbox and click
on Add. To remove a keyword from the list, click on the keyword in
the list and click on Remove.

Keys options
The Keys options set (Figure 21-29) lets you customize key bindings
and assign key combinations to macros.

Figure 21-29 Keys options
ser’s Guide and Reference

Text Settings
A Key Bindings file (.key) associates keystroke sequences with
editor commands and user-defined macros. You can select the
particular key binding set you want to use either with the Key File
option below, or with the Keyboard Emulation file option under the
General tab (see “General options,” earlier in this section).

Commands are grouped into functional categories. The groups are:

• Global: Global commands, used anywhere (includes all
user-defined macros)

• Member: Member-related commands, used in the Class
and Hierarchy Editors

• Text: Text editor functions and commands, used in
Source windows

• Class: Class-related commands, used in the Class and
Hierarchy Editors

• Project: Project-related commands, used in the Project
window

You may assign more than one keystroke sequence to a command.
However, within a category, only one command may be associated
with a particular keystroke sequence.

Key file
Specifies the key bindings set to be used. Select a keyboard
emulation file from the drop-down list.

Keys
Specifies a key sequence. This is not an ordinary textbox; it can
display any keystroke sequence.

There are two ways to enter a keystroke sequence into the textbox:

• Click in the textbox and type the keystroke sequence.
You can enter most sequences in this way. (Keys you
cannot enter directly into the box include Home, End,
Delete, Backspace, Right Arrow, Left Arrow, and Tab.)

• Use the Recorder buttons. Click on the green arrow to
start recording. Enter your keystroke sequence. Click on
the red box to stop recording.
Symantec C++ User’s Guide and Reference 21-31

21 Text Editor Reference

21-32 Symantec C++ U
Commands/macros
The textbox displays the currently selected command (or macro).
You can type in the command name or select a command from the
list by clicking on it.

The list displays commands and associated key sequences. If more
than one sequence is assigned to a command, it is listed as many
times as necessary. The content and sorting of the list is determined
by the Commands/Macros List Options.

Commands/macros list options
Determine the filtering and sorting of commands and macros shown
in the Commands/Macros list.

Scope: Displays commands only in the specified functional category.
Categories are Global, Member, Text, Class, and Project. Specify All
to see all commands.

Show bound keys only: Shows only those commands with an
associated keystroke sequence.

Sort by command: Displays the list alphabetically by command. If
this option is not selected, the list is ordered by key sequence.

Copy to clipboard: Copies the current contents of the commands/
macros list to the Clipboard.

Assign
Assigns the keystroke sequence to the selected command.

If another command in the same functional category is already
bound to this keystroke sequence, you are asked if you want to
reassign the sequence to the new command.

Unassign
Dissociates the selected command from its keystroke sequence.

Save as
Saves the key bindings to a new file. When prompted, type the name
of the new file, or select a file from the drop-down list.
ser’s Guide and Reference

Text Settings
Display options
The Display options set (Figure 21-30) lets you select special font
colors and styles for keywords, comments, preprocessor symbols,
and other special text.

Source code display
Allows you to customize syntax highlighting. You can specify the
highlighting for:

Comments: C/C++ comments

Custom keywords: Special keywords you specify. (See “C++
options,” earlier in this chapter.)

Keywords: C/C++ keywords

Current line: The line containing the insert point

Preprocessor: C/C++ preprocessor directives

Error highlight: Lines on which compiler errors were found

Select Color and Font Style from the drop-down lists next to each
item. (If you select the first color, which is labeled “none,” the
default text color is used for that item.)

Figure 21-30 Display options
Symantec C++ User’s Guide and Reference 21-33

21 Text Editor Reference

21-34 Symantec C++ U
Selection/highlight color
Specifies the text and background color of selected text.

Execution line color
Specifies the text and background color of the current execution line
during debugging.

Backup options
The Backup options set (Figure 21-31) contains options for backing
up files.

Autosave
Causes the editor to save your work automatically after a certain
number of changes, or after a certain number of minutes since the
last save. Specify the number of changes or minutes in the textbox,
and select changes or minutes from the drop-down list.

Backup on file save
This enables automatic backup on save. You must also select the
backup method:

Create .bak File: Copies the previous saved version to file with the
extension .bak .

Figure 21-31 Backup options
ser’s Guide and Reference

Using Global Find
Copy to backup directory: Copies the previously saved version to
another directory. Type the directory into the textbox, or click on
Browse to select a directory from a Directory dialog box.

Invoke OnBackup script: Runs a macro called OnBackup.

Note
The Autosave option also provides some protection
against data loss in the event of a system crash.
When you check Autosave, the editor saves the
contents of each modified buffer to a temporary file
on disk. If the editor does not exit normally (as with
a crash), these files (named ~<num>.SAV , where
<num> is a unique number) will not be deleted.
Line 1 of a .SAV file specifies the drive, directory,
name, and extension of the buffered file, also with
the data and time it was last saved. The rest of the
file stores the contents of the buffer, which you may
be able to recover; use the editor’s Save As option
to save the .SAV file as a source file.

Using Global Find
Global Find is a multi-file search facility. You specify the files to be
searched and the string or regular expression to be searched for.
Global Find presents a list of files in which a match was found and
allows you to view and edit the files, add files to the project, or
refine the search criteria and search again.

Defining the search
You open the Global Find dialog box (Figure 21-32) by choosing
Global Find from a Source window’s Edit menu, choosing Global
Symantec C++ User’s Guide and Reference 21-35

21 Text Editor Reference

21-36 Symantec C++ U
Find from the IDDE’s Tools menu, or clicking on the Find button in
the Edit Buffers dialog box.

The Global Find dialog box has two sections. The upper section
specifies the files to be searched, and the lower section specifies the
pattern to be searched for.

Search files
Three options are available for specifying the files to be searched.

In the current project
All files in the current project are searched.

Currently listed in global search results window
Enabled only after an initial global search has been performed. It
limits the search to files in which a match was found in the previous
global search.

Matching the criteria
Allows you to specify files by filename patterns, directory, date, time,
and attributes.

File names: Comma-separated list of filenames and patterns. To
search all files, use *.* .

Figure 21-32 Global Find dialog box
ser’s Guide and Reference

Using Global Find
Directory: Search files in the specified directory. You can click on
Browse to select a directory from the Choose Directory dialog box.
Check Include Subdirectories to search files in subdirectories as well.

Date: Select Ignore to ignore the date. Otherwise, specify a date and
one of the relational options. For example, specify On and 11/6/94
to search files last modified on November 6, 1994, or After 4/1/90
and to search files last modified after April 1, 1990.

Time: Select Ignore to ignore the time. Otherwise, specify a time and
one of the relational options.

Attributes: Search files with the given attributes. File attributes are
Archive, Read Only, System, and Hidden.

The Attributes check boxes are three-state check boxes. If an
attribute is checked, files with the given attribute are searched. If an
attribute is cleared, files without the given attribute are searched. If
an attribute is grayed, the attribute is ignored when deciding which
files to search.

Search Pattern
Type the pattern to search for into the textbox. Three options can be
used to modify the search:

Ignore case
Do not consider case when searching for a match.

Whole words only
Consider text a match only if it is not part of a larger alphanumeric
string.

Regular expression
Enables regular expression matching.

Regular Expressions
A regular expression is a string with wildcards. The following
wildcards are supported:

Wildcard Meaning
? Matches any character.

* Matches zero or more occurrences of any
character.
Symantec C++ User’s Guide and Reference 21-37

21 Text Editor Reference

21-38 Symantec C++ U
The Search window
After specifying the search criteria, click OK to start the search.
As the search begins, the editor opens the Search window (Figure

@ Matches zero or more occurrences of the
previous character or expression. For
example, Ax@B matches AB, AxB, AxxB, and
so on.

% or < Matches the beginning of a line. For example,
<{ finds lines that start with left braces.

$ or > Matches the end of a line. For example, %$
finds blank lines.

[...] Matches any of the characters listed between
the square brackets. A hyphen can be used to
specify a range of characters. For example,
[axz] matches a, x , or z ; [a-z] matches
any lowercase letter.

[~ ...] Matches any characters except those listed.

\ Escape character indicates that the following
character should be taken literally rather than
used as a wildcard character. For example, \%
matches a percent sign.

\t Matches a tab character.

\f Matches a formfeed character.

Wildcard Meaning
ser’s Guide and Reference

Using Global Find
21-33). This window contains a list of files in which a match is
found.

Also during the search, the Search Progress dialog box displays
statistics (Figure 21-34). Click Stop to terminate the search at the
current point, or click Revert to return to the Global Find dialog
box.

When the search is complete, the Search Progress dialog box
closes and the Search window contains a list of files in which at least
one match occurred.

Figure 21-33 Search window

Figure 21-34 Search Progress dialog box
Symantec C++ User’s Guide and Reference 21-39

21 Text Editor Reference

21-40 Symantec C++ U

Refine

Show File

Add Selected To Project

Add All To Project
Search menu commands
The Search window’s Search menu (Figure 21-35) contains
commands to open files in Source windows, add files to the project,
and continue the global search.

Reopens the Global Find dialog box. You may refine your search
criteria and continue the global search. This command is disabled if
no matches were found.

Opens the selected file in a Source window. You can also open a file
by double-clicking on the file in the list. The file is positioned to the
first match of the search pattern.

Adds the selected file to the current project.

Adds all files listed in the Search window to the current project.

Toolbar commands
The Search window toolbar (Figure 21-36) offers quick access to
menu choices.

Refine: Same as choosing Refine from the Search menu

Show file: Same as choosing Show File from the Search menu

Figure 21-35 Search menu commands

Figure 21-36 Search window toolbar

Show file

Refine
ser’s Guide and Reference

Using
Version Control

22

The I

wor

DDE’s Version Control System (VCS) allows programmers to
k safely with the same source files simultaneously, integrate their

changes, rebuild their own sources, and store updated master files in
a common master archive.

The VCS works in combination with INTERSOLV’s PVCS, a popular
version control program for the PC. However, VCS offers significant
functional improvements over PVCS alone, because it is integrated
with the IDDE’s project system and has access to information stored
in the project (.prj) file. Symantec’s VCS guards against
accidentally overwriting changes made by others and provides the
highest level of support possible for keeping both your private
project directory and the master project directory fully synchronized.

Note
If you do not have PVCS, you need to purchase it
from INTERSOLV before you can use Symantec’s
VCS. See the PVCS documentation for information
on PVCS features and commands.

This chapter assumes a knowledge of PVCS and a familiarity with
basic version control concepts. The chapter focuses on using the
group-oriented model of software development that VCS makes
possible, and it explains how to use VCS to build and maintain
projects.

Note
The IDDE’s Version Control System (VCS)
is supported only in the 16-bit version of
Symantec C++.
Symantec C++ User’s Guide and Reference 22-1

22 Using Version Control

22-2 Symantec C++ U
Overview of VCS Concepts
This section defines basic terms used in this chapter and compares
the parallel model of version control to the linear model supported
by other version control systems.

The next section, “Setting Up Version Control with VCS,” presents an
overview of how you or your project team can use VCS to establish
and maintain version control on software development projects of
any size.

Terminology
The following terms are used throughout this chapter:

• Archive (or master archive): All revisions of a source file,
stored in a commonly accessible directory structure,
usually on a network.

• Revision: A revised archived source file that has a
revision number and timestamp that identifies when the
revision was created.

• Workfile: Your private copy of the revision that you are
currently working on.

• Private project directory: Your personal working
directory to which others do not have access. You work
with workfiles in your private project directory.

• GET: The process of obtaining a private copy of a
revision of an archive (usually the latest revision).

• MERGE: The process of collating changes to a revision
into the archive, without overwriting or corrupting any
changes made by others since you got the revision.

• PUT: The process of creating a new revision of a file in
the archive.

• Version: A group of revisions containing all source files
that make up a project. Typically you create versions to
correspond to milestones in the development process,
such as the weekly build or the beta build.
ser’s Guide and Reference

Setting Up Version Control with VCS
Version control models
There are two basic models for version control:

• Linear: Only one person can work with a file at any one
time.

• Parallel: Groups of people can work with the same set of
files simultaneously.

Most version control systems support a linear model of version
control. In practice, few support a parallel version control system
because additional support is required to prevent losing changes.
The Symantec C++ IDDE, however, fully supports the parallel model.

Setting Up Version Control with VCS
This section gives you an overview of how you can use VCS on your
software development project. The remainder of the chapter
explains how to use VCS to perform the operations introduced here.

Using the linear model with VCS
In the linear model, VCS locks a revision when someone GETs it;
that is, VCS prevents others from making a private copy. Thus, only
one person may work with a revision at a time. It is even possible to
lock all revisions that make up a particular version.

After changing the revision, the person who receives it must PUT it
back into the master archive before others can make changes to it.

The advantage of the linear method of version control is that you do
not have to collate (merge) sets of changes to a revision. The
obvious disadvantage is that only one person can work on a file at a
time. In large development projects in which many people are
making changes to related groups of files, this model is often
unworkable.

Using the parallel model with VCS
The parallel version control model allows two or more people to
work simultaneously with copies of the same revision—a clear
advantage even in a small work group. The disadvantage of this
model is that each person’s changes must be merged with changes
made by others, so the master archive of a revision incorporates
everyone’s work and the related changes made to other files
(sometimes called “dependencies”).
Symantec C++ User’s Guide and Reference 22-3

22 Using Version Control

22-4 Symantec C++ U
When working in a parallel version control environment, the
revisions and versions used by the development team are stored in a
master archive, usually on a network. Developers GET a revision (or
more typically a group of related revisions) from the master archive
and work with the copies (workfiles) in their own private project
directory.

After making changes to a group of workfiles, developers must
MERGE their changes into the latest version of revisions of the files.
This is done in the private project directory because it often involves
identifying changes made by others in the interim, along with
resolving dependencies in other revisions that were affected by other
people’s changes.

Note
In your revised file, be sure to identify the revision
with which you want your changes merged. You
make this reference by adding a $revision entry
in the file.

When changes are merged successfully, and all related changes have
been made to affected revisions in the private project directory, each
developer PUTs the new revisions back into the master archive.

If a revision has been modified during the MERGE, it must be
remerged before it can be PUT into the archive. VCS warns you of
this automatically and gives you a way to prevent other people from
merging changes into the archived version of a revision until you
have successfully PUT it.

The parallel model also supports branching of revisions. When you
create a branch of a revision, you can PUT it back into the archive
without performing a MERGE. This allows others to GET your
changes to a revision. You use the branching mechanism if you want
a set of changes available to you but you do not want to MERGE the
changes until your work is complete. For more information, see
“Creating a new branch,” later in this chapter.

Setting VCS Options
This section explains how to use the options in the VCS page of the
Project Settings dialog box to set up version control parameters
that specify the rules VCS follows when you GET and PUT files.
ser’s Guide and Reference

Setting VCS Options
To open this dialog box, open the project you want to work with,
and choose Settings from the IDDE’s Project menu. In the Project
Settings dialog box, select the VCS tab. The VCS page is shown in
Figure 22-1.

Choosing a Development Model
The Development Model radio buttons specify the development
model that VCS uses. Select the Parallel model, described earlier in
this chapter, unless you are the only person working on the files in a
project.

Select Linear if you are working alone, or if you need to deny other
developers access to revisions you are working on.

You can switch from the parallel to the linear mode when, for
example, you need to prohibit GET operations on revisions you are
merging (see “Merge Options,” later in this chapter).

The IDDE sets the rest of the VCS options for you, based on the
development model you select, as described later in this chapter. If
you need more control over the version control process, you may
change the default settings. This is not usually necessary.

Figure 22-1 VCS page in Project Settings dialog box
Symantec C++ User’s Guide and Reference 22-5

22 Using Version Control

22-6 Symantec C++ U
Get Options
These options specify how VCS handles your requests to GET
revisions from the master archive:

Get read only: Lets you GET files from the master archive, but with
read only access; you cannot modify the files you GET. Check this
option if you want to view a revision (for example, an old revision),
or if you want to ensure that you do not accidentally change the
files. This option is off by default in both development models.

Get and lock: Prevents others from successfully executing a GET
operation on a revision once you GET it. The revision remains
locked until you PUT it back in the archive again. This option is on
by default when you choose the Linear development model.

Get and touch: Sets the time-stamp for any revision you GET to the
current date and time. This setting forces recompilation of your files.
It is off by default in both development models.

Continue on overwrite error: Tells the IDDE to overwrite a file on
a GET operation without displaying a warning. Use this setting to
wipe out all changes you have made to a revision and GET a new
copy from the master archives. This option is off by default in both
development models.

Merge Options
The Lock Master File on Merge Setting prohibits others from
executing a PUT operation on a revision in the master archive while
you are performing a MERGE on it. This option is off by default in
both development models.
ser’s Guide and Reference

Creating a VCS Configuration File
Creating a VCS Configuration File
A VCS configuration file defines a series of variables that tell VCS
where to look for and create files. You can create a VCS
configuration (.cfg) file with the integrated editor or any other text
editor. You need a .cfg file for each project in which you use VCS.

A sample configuration file, vcs.cfg , comes with Symantec C++.
(It is installed in \sc\samples\windows\wclock by default.)
The sample vcs.cfg contains information that VCS needs to work:

• vcsdir : The directory in which VCS stores master
archives. This variable must be defined for VCS to work.
(All others are optional and default to the current
directory.)

• journal : The file name and path in which VCS creates
a journal (journal.vcs) that contains the information
about changes to revisions in an archive.

• archivework : The directory in which VCS keeps
backup copies of revisions as they are updated. (This
command corresponds to the LOGWORK command in
older versions of PVCS.) Do not specify a RAM disk as
the ARCHIVEWORK directory.

• workdir : The VCS temporary directory.

It is a good idea to give the .cfg file for a project the same name as
the project itself and to save it in your private project directory.

Selecting the configuration file
Before you use VCS for the first time on a project, you need to select
the configuration file for the project:
Symantec C++ User’s Guide and Reference 22-7

22 Using Version Control

22-8 Symantec C++ U
1. In the Project window, choose Configuration from the
VCS menu. The Set VCS Configuration dialog box
opens.

2. Select the configuration file you want and click OK. You
need to specify its location if it is not in the current
directory.

The PVCS Registration dialog box
The first time you open the Set VCS Configuration dialog box, the
PVCS Registration dialog box is displayed. You must have an
INTERSOLV LAF (License Administration Facility) code to use PVCS
in the IDDE. INTERSOLV supplies the LAF code to licensed users.
For more information, please contact INTERSOLV. Type the code in
the License Code textbox, then click OK to continue. After the PVCS
Registration dialog box disappears, a message informs you that you
must restart Windows.

The User database directory textbox shows the database directory in
which the license database is placed. This directory should be a
shared directory on the network if multiple developers are using the
same copy of the IDDE from the network. If developers have
individual copies of the IDDE, do not change the text in this box.

Note
If you have PVCS version 5.0 or later, the IDDE
does not display the PVCS Registration dialog box.

Figure 22-2 Set VCS Configuration dialog box
ser’s Guide and Reference

Putting Revisions into the Archive
Putting Revisions into the Archive
When you PUT a revision in the master archive, VCS updates its
revision number and time stamp and marks it as “not changed” with
respect to the corresponding workfile in your private project
directory.

Note
If, while you were performing a MERGE, another
person has PUT a new revision of a file you want to
PUT, VCS warns you with a modal dialog box that
you must perform another MERGE operation on the
revision.

To prevent others from working on a revision while
you are merging it, check Lock Master File on
Merge. See the section “Merge Options,” earlier in
this chapter, for more information.

To begin a PUT operation, choose Put from the Project window’s
VCS menu. The Put dialog box is displayed.

The Put Candidate Files listbox shows those workfiles in your private
project directory that have changed since you checked them out.
Click the Add button to add files from this list to the Files to Put
Back listbox; this shows the files you want to PUT into the master

Figure 22-3 Put dialog box
Symantec C++ User’s Guide and Reference 22-9

22 Using Version Control

22-10 Symantec C++ U
archive. To remove a revision from the Files to Put Back list, select it
and click on Remove.

Click on Select All to select all files in the current listbox. Click on
Unselect All to deselect them.

Select a file name and click on View Log for a summary of who
changed the latest revision of that file and the changes that were
made.

To associate comments with all selected files in the Files to Put Back
listbox, type them into the Comments textbox.

Click on Put to PUT the files listed in the Files to Put Back listbox
into the master archive.

Click on the Advanced button and the Put dialog box expands to
show additional options.

When you PUT files into the archives, you can specify a group of
files using the Put Special textboxes. The Put Special options are:

Revision: Specifies the revision number you want to give the
workfiles you are putting into the archives. The revision number has
the format nn.xx, where nn is the major number and xx is the minor
number. The numbers can range from 0 to 65,535.

If you do not explicitly assign a revision number to a revision, VCS
assigns one automatically by incrementing the minor number of the
most recent revision by one.

Version: Assigns the name you want to a group of revisions, such as
beta or alpha. VCS associates the version name with all revisions
listed in the Files To Put Back listbox.

Date/Time: The date and time of a version or revision you archive.
The default date format is mmm/dd/yy; mmm is the month, dd the
day, and yy the year. The time format is hh[:mm[:ss]]; hh is the hour,
mm is the minute, and ss is the second.
ser’s Guide and Reference

Getting Revisions from an Archive
Creating a new branch
Use the Create New Branch option to maintain a private set of
revisions in the master archives without having to MERGE them.
When you have a private branch, you can change a file and perform
PUT operations as often as necessary, without affecting other
developers.

When you are ready, you can MERGE your private revisions back
into the master archive.

Note
A MERGE is the only way to make the changes in a
branch available to other developers.

Getting Revisions from an Archive
Before you can work with archived revisions, you need to GET them
from the archive and copy them to your private project directory
using the Get dialog box, shown in Figure 22-4. (Both the archive
directory and your private project directory are specified in the VCS
configuration file for the project.)

When you GET a revision from an archive, VCS records the revision
identification numbers of the files, marks them as unchanged and
not new, and adds them to your project (if you so specify in the Get
dialog box).

If you are using the linear development model, VCS locks the
archived revisions when you GET them so nobody else can GET
them until you PUT them back. If you are using the parallel model,
more than one developer can check out the revision unless you
specify Get and Lock on the VCS page in the Project Settings dialog
box.

To GET revisions from the master archive:
Symantec C++ User’s Guide and Reference 22-11

22 Using Version Control

22-12 Symantec C++ U
1. In the Project window, choose Get from the VCS menu.
The Get dialog box is displayed.

2. The VCS File Name listbox shows the names of all
revisions in the archive. Select from this list the files you
want to move to your private project directory.

To add one or more files, click on the file name(s), then
click on the Add button. To add all files in the archive,
click on the Select All button. VCS moves the files you
select to the Work Files listbox.

To view a summary of who made certain changes to a
revision, click on View Log. (This is the same log that is
available from the Merge dialog box.)

3. When all the files you want are in the Work Files list,
click the Get button. VCS copies those files to your
private project directory.

To remove files from the Work Files list, click on the file
name(s), then click on the Remove button.

Figure 22-4 Get dialog box
ser’s Guide and Reference

Merging Revisions
Click on the Advanced button to display the following additional
options: Show Archives, Get Special, and Add Files to Project.

Show Archives provides the following settings:

All archives: Displays all archives in the VCS File Name listbox. This
is the default setting.

New archives: Displays in the VCS File Name listbox the names of
the new archives and archives that have changed since the last time
you performed a GET operation. Choose this option to update your
private copy of the project with the most current revision(s).

Except merges: Displays in the VCS File Name listbox all the new
revisions in the archive except those you just merged or need to
merge. Select this option to choose only those additional archives
you need to build and to test merged revisions.

The Add Files to Project option adds the revisions automatically to
the current project when VCS gets them from the archive.

To retrieve a specific revision or version, use the Get Special
textboxes:

• Revision is the number of the revision you want to get
from the archives. The revision number has the format
nn.xx, where nn is the major number and xx is the
minor number.

• Version is the name of the version you want to GET. The
version name identifies a particular version, such as
alpha or beta.

• Date/Time is the date and time of a particular version or
revision. The default date format is mmm/dd/yy; mmm is
the month, dd the day, and yy the year. The time format
is hh[:mm[:ss]]; where hh is the hour, mm is the minute,
and ss is the second.

Merging Revisions
If you are working with the parallel development model, after you
GET a revision and make changes to it, you may need to MERGE
those changes into the master archive. The master archive
presumably contains changes made by others that your revision does
Symantec C++ User’s Guide and Reference 22-13

22 Using Version Control

22-14 Symantec C++ U
not include. If no other developer has changed the file, then you do
not need to MERGE; you simply PUT the new revision in the master
archive.

Note
Remember that in your revised file, you must refer
to the revision with which you want your changes
merged. You do this by adding a $revision entry
in the file.

When you MERGE a revision, VCS creates a backup of your revision
in your private project directory. In addition, VCS provides all
possible support for performing MERGE operations safely.

To merge your changes into another revision in the archive, choose
Merge from the Project window’s VCS menu. The Merge dialog box
opens.

Figure 22-5 Merge dialog box
ser’s Guide and Reference

Merging Revisions
The Merge dialog box contains four listboxes:

Files you modified: Shows the files you modified in your private
project directory since the last time you performed a GET operation.

Files new in VCS: Shows archives that someone else has changed
since the last time you performed a GET operation. The current
(most recent) revision number is displayed. These are files you might
need to GET to rebuild the project with your changes and to PUT
your new revisions back into the archive.

Files to merge: Shows files that both you and another person
changed since the last time you performed a GET operation. These
are the workfiles you need to MERGE.

Merged files: Shows files that you merged during the current
MERGE session.

To display a log showing who changed an archive and what changes
were made at each revision, click on a file name in one of the
listboxes and click on the View Log button. See the PVCS
documentation for information on the display format.

Click the View Changes button to show the changes you need to
resolve when you MERGE the selected revision. When you click
View Changes, an annotated change file appears in an IDDE editor
window. See the PVCS documentation for information on the format
of the display and the meanings of symbols.

When you are ready to perform the MERGE operation, click on
Merge. VCS guides you through a three-way merge, incorporating
your changes and those made by others into a new revision.

Because the IDDE automatically makes backup copies of both the
revision in your private project directory and the revision you want
to MERGE it with, you can undo a MERGE (before closing the Merge
dialog box) by clicking Undo Merge.

Testing the MERGE operation
To test the MERGE, return to the Get dialog box, click on Advanced,
and select Except Merges. GET the files in this list and build them
using the IDDE (see Chapter 8, “Testing an Application,” for
information).
Symantec C++ User’s Guide and Reference 22-15

22 Using Version Control

22-16 Symantec C++ U
Using the VCS Manager
Use the VCS Manager for additional flexibility in managing revisions
and versions. You can apply a version name to a set of archives
when the software reaches a significant release step, such as beta or
final release. You can also delete a named version or revision from
an archive. Before deleting a version or revision, make sure that you
are deleting the right one, as a deleted version or revision cannot be
recovered. Finally, the VCS manager lets you lock or unlock a
version or revision.

To use the VCS Manager in the Project window, choose Manager
from the VCS menu.

The VCS Manager dialog box shown in Figure 22-6 is displayed.

Note
You probably will not need to use the VCS
Manager dialog box on most projects.

Figure 22-6 VCS Manager dialog box
ser’s Guide and Reference

Creating a Master Archive
The VCS Directory listbox contains the names of revisions to add to a
version or revision. Double-click on the file name to add it to the
Selected Files listbox. Click on Select All to select all files.

To assign a version name, type the name, such as beta , in the
Version textbox, and click on the Assign button. This assigns the
version name to all files in Selected Files. The Assign and Unassign
buttons are available only if you specify a version name in the
Version textbox.

To control access to a particular version or revision, specify the
revision (its number) or version (its name) in the appropriate
textbox, then click on Lock to deny access or Unlock to allow
access.

To delete a version or revision, specify the appropriate information
in the Revision or Version textbox, and click on the Delete button.

Creating a Master Archive
When you begin using VCS, it may be your job to create the master
archive to and from which others GET and PUT files. This section
describes the process of creating a master archive.

The master archive contains the revisions to all source files in a
project. It also records information about changes from the previous
revision, a history of the changes since the first revision, a record of
who changed the files, the comments attached to the revisions as
they were changed, and the date and time that each revision was
PUT into the archive. See the PVCS documentation for additional
information.

To set up a master archive, you PUT the workfiles in your project
directory in the archives using the Put command. This command
takes files from the original directory and creates the archives
automatically. See “Using the VCS Manager,” earlier in this chapter,
for more information on the Put dialog box and how to
use it.

When you PUT files in an archive, VCS changes their extensions
automatically. The last character of the extension on each file is
changed to V. For example, the file extension on abc.cpp becomes
abc.cpv . If the file does not have an extension, VCS adds the
extension .__v to the filename (two underscores and a v).
Symantec C++ User’s Guide and Reference 22-17

22 Using Version Control

22-18 Symantec C++ U
To create a master archive from the workfiles in your private project
directory:

1. Choose Put from the VCS menu in the Project window.

2. PUT the workfiles from your private project directory
into the archive by double-clicking on the file in the Put
Candidate Files listbox.

The Put Candidate Files listbox displays the names of
workfiles that you changed since the last time you
performed a GET operation. The listbox also shows the
files that do not yet have archives. Because you are
creating the archives, all files in the project are displayed.
Files you select are added to the Files To Put Back
listbox.

3. To add all your workfiles to the master archive, click on
Select All. To remove a workfile from the list of files to
archive, select the file in the Files To Put Back list and
click on the Remove button.

4. Optional: Type a comment in the Comments textbox.
VCS applies your comment to all selected files in the
Files to Put Back listbox.

5. Click the Put button to create the master archives and
PUT your workfiles in them.
ser’s Guide and Reference

	More about Creating Programs
	More about Projects and Workspaces 15
	Environment Menu Commands
	Workspace
	Save workspace set on exit
	Open last project on launch

	Color

	More about Projects
	What a project contains
	C and C++ files
	Header files
	Assembly files
	Object files
	Resource and dialog script files
	Libraries
	Linker definition files
	Project files
	Option set
	Batch and makefiles

	Project-generated files
	Hierarchical project structure
	Dependency tracking
	Project menu commands
	Target settings
	Operating system
	Target type
	Uses
	Project settings
	Allow project to be built
	Parse for browsing

	Build settings
	Option sets
	VCS options
	Directories
	Include directories
	Library directories
	Compiler output directory
	Target output directory
	Browser exclude directories
	Source search path

	The Project Window
	Parse menu commands
	View menu commands
	Trace menu commands
	VCS
	Project window left pane pop-up menu commands
	Project window right pane pop-up menu commands
	“...” pop-up menu commands
	Project window mouse functions

	More about Project Build Settings 16
	Introducing Build Settings
	Compiler
	The Compiler subpage (Figure 16�1) contains a vari...
	Enforce ANSI compatibility
	Treat source as C++
	Relax type checking
	Suppress predefined macros
	Exception handling
	Run-time type information
	Enable new[], delete[] overloading
	char behavior
	Prototyping
	International characters
	Other options
	Defines
	Include filename
	Instantiate template

	Code Generation
	Pointer validation
	Generate stack frame
	Check stack overflow
	Fast floating point
	Generate inline 8087 code
	Generate virtual function tables in far data
	Use Pascal calling convention
	Use Stdcall calling convention
	Enable function-level link
	No default library
	Set data threshold
	Code segment
	Generate new segment for each function
	Override default code segment name
	Put switch tables in code segment
	Put expression strings in code segment

	Struct alignment
	Target CPU

	Header Files
	Precompile options
	No headers
	All headers
	Specific header
	Use precompiled headers from directory
	Include headers once

	Memory Models
	Memory model
	Data segment
	Assume SS==DS
	Always reload DS

	Code Optimizations
	Optimization for
	Optimizations
	C++ inlining

	Windows Prolog/Epilog
	Set EXE defaults
	Set DLL defaults
	Real mode full prolog/epilog
	Real mode reduced
	Real mode smart callbacks
	Custom

	Output
	Source listing files
	Verbose
	Macro expansions
	Assembly listing (.COD)

	Warnings
	Warnings
	Treat warnings as errors
	Turn off error maximum
	Selected warnings

	Debug Information
	Debug information
	Trace prolog/epilog
	Line numbers
	Symbolic debug information
	Make static functions global

	Linker
	Debug information
	No default library
	Case sensitive
	Far call translation
	Reorder segments
	Export by ordinal
	Don’t export names
	Export, case sensitive
	Export, uppercase
	DOSSEG ordering
	No null DOSSEG
	Warn if dups
	Delete EXE/DLL on error
	Create ImpDef
	Fix DS
	Keep segments in .def order
	Requires Windows 3.0
	Requires Windows 3.1
	Generate import library
	Import lib page size
	Alignment
	Base
	Entry point

	Packing & Map File
	Packing
	Win pack
	EXE pack
	Smart linking
	Pack code
	Pack data

	Map file
	Map file options
	Cross reference
	Line numbers
	Group information

	Definitions
	Name
	Description
	Heap size
	Stack size
	Stub
	Version
	Initialize once
	Private lib
	Initialize process
	Terminate process
	Initialize thread
	Terminate thread

	Segments
	Segment Type
	Attributes
	Conforming
	Discardable
	Shared
	Preload
	I/O privilege
	Moveable

	Access Rights
	Execute Read
	Execute Only
	Read Write
	Read Only

	Instance
	Multiple data segments
	Single data segment

	Mode
	Protected mode
	Real mode

	Imports/Exports
	Imports
	Internal name
	External file
	External name
	Ordinal
	Add, Replace, Remove

	Exports
	External name
	Internal name
	Ordinal
	Parameters
	No data
	No name
	Memory resident name
	Private
	Add, Replace, Remove

	Resource Compiler
	Error maximum
	Use predefined macros
	Generate warnings
	Verbose
	32-bit resources
	Define macros
	Source file listing
	Default hex language
	Code page
	International characters

	Make
	IDDE make options
	Build order
	Link order
	Track dependencies
	Track system includes
	On error continue unrelated
	Ignore errors in build
	Multitasking

	Netbuild
	Use NetBuild
	Use remote headers
	Working directory
	Remote password

	Build order
	Link order

	External Make
	Using external make
	Make command line
	Initial directory

	Librarian
	Ignore case
	Do not create backup
	Page size

	More about AppExpress 17
	Selecting an Application Type
	Applications
	OLE Options group
	Project options group

	Providing Miscellaneous Information
	The Document/View Architecture
	Frame window
	View
	Document
	Pulling it all together: the document template

	More about Message Maps
	The rationale for maps
	Components of the message map
	BEGIN_MESSAGE_MAP, END_MESSAGE_MAP macros
	ClassExpress-specific comment sections
	Message-mapping macros

	Generating and Examining the Source Files

	More about ClassExpress 18
	Deriving a Class to Handle User Interface Events
	Working with Data Transfer: DDX and DDV
	Implementing Dialog Data Exchange (DDX) using Clas...
	Understanding data transfer at the source code lev...
	Dialog Data Exchange (DDX)
	Dialog Data Validation (DDV)
	Calling UpdateData

	Making Your Application an OLE Automation Server
	What is an OLE automation server?
	OLE Automation Server vs. OLE Server
	Enabling your application to be an OLE automation ...
	Adding exposed functions to an automation server c...
	Adding properties to an automation server class
	OLE automation server source code

	Making Your Application an OLE2 Automation Client
	Creating a C++ Wrapper Class for an Existing VBX
	Summary

	Class Editor Reference 19
	The Class Editor Window
	Edit menu commands
	Goto menu commands
	Macro menu commands
	New! command
	Classes pane pop-up menu commands
	Class name
	Header file
	Access
	Virtual
	Base class
	Access
	Virtual

	Members pane pop-up menu commands
	Access
	Storage
	Inline
	Declaration
	Source file
	Access
	Storage
	Inline
	Source file

	Source pane pop-up menu commands
	Class editor mouse functions
	Classes pane
	Members pane
	Source pane

	Toolbar commands

	Class Editor Settings
	General options
	Browser operations
	Text edits, per buffer
	Confirmations
	Open output window on message
	Keyboard emulation file
	Multiple selections

	Class options
	List classes
	Font
	Apply here only

	Member options
	Grouping
	Sorting
	Show full method names
	Font
	Apply here only

	Hierarchy Editor Reference 20
	The Hierarchy Editor Window
	Edit menu commands
	Macro menu commands
	New! command
	Pop-up menu commands
	Class name
	Header file
	Access
	Virtual
	Base class
	Access
	Virtual

	Mouse functions
	Toolbar commands

	Members Child Window
	Member menu commands
	Access
	Storage
	Inline
	Declaration
	Source file
	Access
	Storage
	Inline
	Source file

	Pop-up menu commands
	Mouse functions

	Source Child Window
	Edit menu commands
	Goto menu commands
	Pop-up menu commands
	Mouse functions

	Hierarchy Editor Settings
	General options
	Browser operations
	Text edits, per buffer
	Confirmations
	Open output window on message
	Keyboard emulation file
	Multiple selections

	Hierarchy options
	Pop-up windows
	Font
	Apply here only

	Member options
	Grouping
	Sorting
	Show full method names
	Font
	Apply here only

	Text Editor Reference 21
	The Source Window
	File menu commands
	File 1 and File 2
	Line
	Display
	Header and footer
	Margins
	Font
	Printer
	Print range
	Print quality
	Copies
	Setup

	Edit menu commands
	Pattern
	Ignore case
	Whole words only
	Regular expression
	Pattern
	Replacement
	Ignore case
	Regular expressions
	Confirm changes
	Restrict changes to selected text
	Whole words only
	Tab spacing
	Right margin
	Word wrap
	Autoindent
	Read only
	Use as default for ...
	Expand tabs with spaces
	C++ mode
	Persistent

	Goto menu commands
	Bookmark list
	Goto
	Clear
	Drop
	Context
	Buffer list
	Buffer properties
	Switch to
	Open
	Save
	Save all
	Save as
	Close
	Close all
	Find

	Macro menu commands
	Existing macros
	Menu order
	Put in menu
	Edit
	Rename
	Clone
	Delete

	New! command
	Pop-up menu commands
	Toolbar commands

	Text Settings
	General options
	Browser operations
	Text edits, per buffer
	Confirmations
	Open output window on message
	Keyboard emulation file
	Multiple selections

	Text options
	Tab spacing
	Right margin
	Autoindent
	Expand tabs with spaces
	Show horizontal scroll bar
	Remove trailing spaces on save
	Cursor styles
	Font
	Brief-compatible select
	Typing replaces selection
	Cut/copy line without selection
	Normal selection for debugging
	Virtual cursor
	Enable menu accelerators
	Help Files

	C++ options
	Check delimiters
	Enable C++ mode
	Enable C++ mode for untitled files
	Indent after {
	Auto-align comments at column
	Enable C++ mode on extensions
	Custom keywords

	Keys options
	Key file
	Keys
	Commands/macros
	Commands/macros list options
	Assign
	Unassign
	Save as

	Display options
	Source code display
	Selection/highlight color
	Execution line color

	Backup options
	Autosave
	Backup on file save

	Using Global Find
	Defining the search
	Search files
	In the current project
	Currently listed in global search results window
	Matching the criteria

	Search Pattern
	Ignore case
	Whole words only
	Regular expression

	Regular Expressions
	The Search window
	Search menu commands
	Toolbar commands

	Using Version Control 22
	Overview of VCS Concepts
	Terminology
	Version control models

	Setting Up Version Control with VCS
	Using the linear model with VCS
	Using the parallel model with VCS

	Setting VCS Options
	Choosing a Development Model
	Get Options
	Merge Options

	Creating a VCS Configuration File
	Selecting the configuration file
	The PVCS Registration dialog box

	Putting Revisions into the Archive
	Creating a new branch

	Getting Revisions from an Archive
	Merging Revisions
	Testing the MERGE operation

	Using the VCS Manager
	Creating a Master Archive

